

SERVICE
MANUAL

CD-94MK2

130272510333

marantz®

COMPACT
DISC
DIGITAL AUDIO

model CD-94MK2

Compact Disc Player

MARANTZ DESIGN AND SERVICE

Using superior design and selected high grade components, MARANTZ company has created the ultimate in stereo sound.

Only original MARANTZ parts can insure that your MARANTZ product will continue to perform to the specifications for which it is famous.

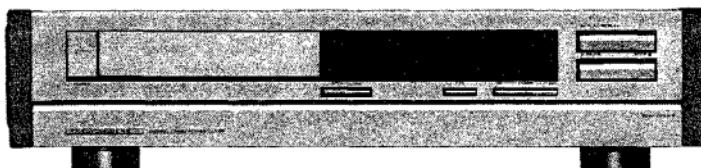
Parts for your MARANTZ equipment are generally available to our National Marantz Subsidiary or Agent.

ORDERING PARTS:

Parts can be ordered either by mail or by telex. In both cases, correct part number has to be specified. The following information must be supplied to eliminate delays in processing your order:

1. Complete address
2. Complete part numbers and quantities required
3. Description of parts
4. Model number for which part is required
5. Way of shipment
6. Signature: any order form or telex must be signed otherwise such part order will be considered as null and void.

PARTS ORDERING


Parts may be ordered at the following addresses:

AUSTRIA HORNYPHON Vereinsgesellschaft GmbH Wienerbergstrasse 1 A 1101 Wien Austria Telex: 132.332	FINLAND MARANTZ DIVISION OF OY PHILIPS Ab Kaihakatu 8 00100 Helsinki Finland Telex: 124811	GREAT BRITAIN MARANTZ AUDIO U.K. Ltd Unit 15/18 Saxon Way Industrial Estate Moore Lane Harmondsworth UB7 0LW Great Britain Telex: 935196	SAUDI ARABIA AL ALAMIAH ELECTRONICS P.O.Box 5954 University Street Riyadh 11432 Saudi Arabia Telex: 401530	SWITZERLAND DYNAVOX ELECTRONICS Route de Villars 105 1701 Fribourg Switzerland Telex: 942377
BELGIUM SVD DIVISION MARANTZ Industrialaan 1 1720 Groot-Bijgaarden Belgium Telex: 24466	FRANCE MARANTZ FRANCE 4 Rue Bertrand Paliisy 92600 Asnières France Telex: 61651	GREECE SHERTON ELECTRONICS S.A. P.O.Box 21025 Hippocratus Street 188 Athens 11471 Greece Telex: 216.795	SOUTH AFRICA MARANTZ DIVISION OF PHILIPS S.A. Main Road Martindale P.O. Box. 58098 Newville 21114 South Africa	TURKEY DOGRUOL Ltd. I.M.C. 6 Blok N°6310 Unkapanı İstanbul Turkey Telex: 22085
CHILE MARANTZ DIVISION OF PHILIPS S.A. Av. Santa María, 0780 Casilla 2687 Santiago Telex: 240.239	GERMANY MARANTZ GERMANY GmbH Max-Planck-Strasse 22 6072 Dreslach 1 Germany Telex: 529821	JAPAN MARANTZ JAPAN, Inc. 35-1, 7-chome, Sagamihara Sagamihara-shi, Kanagawa Japan Telex: 216.795	SPAIN PHONO S.A. Ignacio Iglesias 10 Badalona (Barcelona) Spain Telex: 59355	MALTA CACHIA & GALEA Republic Street, 58D Valetta Telex: 1682
DENMARK MARANTZ DIVISION OF PHILIPS SERVIA A/S Frederiksborg 80 Postbox 1919 DK-2300 København S Denmark Telex: 31201	THE NETHERLANDS Elpro Marantz Wint Hoven 28 3526 KV Utrecht The Netherlands Telex: 4748	KUWAIT AL ALAMIAH ELECTRONICS Ussama Building Fahd al Saieem Street P.O.Box 23781 Safat-Kuwait Telex: 22694	SWEDEN MARANTZ DIVISION OF PHILIPS Färsljöling AB Tegevuddevägen 1 S-115 84 Stockholm Sweden Telex: 14060	PORTUGAL MARANTZ Divisão Philips S.A. service Outeiro-carraxide 2795 Linda-A-VELHA Telex: 43906
NORWAY MARANTZ DIVISION OF PHILIPS A/S Sandstuveien 40 0680 Oslo 6 Norway Telex: 72640	ITALY MARANTZ ITALIANA S.P.A. Via Chiesa, 74 20126 Milano Italy			

All of the above locations are fully equipped to take care of your total service needs. Because various countries have differing configuration requirements, it is necessary that you contact the service facility in your particular country. In the event that there is no service location listed for your country, please, contact the nearest facility for the necessary assistance.

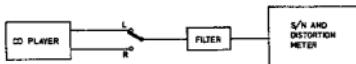
In case of difficulties, do not hesitate to contact the Technical Department at abovementioned address.

MODEL CD-94MK2 COMPACT DISC PLAYER

1. P.W. BOARDS

As can be seen from the circuit diagram the chassis of Model CD-94MK2 consists of the following units. Each unit mounted on a printed circuit board is described within the square enclosed by a bold dotted line on the circuit diagram.

1. Demo	mounted on P.W. Board PD16
2. Optical Out	mounted on P.W. Board PD26
3. Feature μ -COM	mounted on P.W. Board PM16
4. Audio/Power	mounted on P.W. Board PP16
5. DAC	mounted on P.W. Board PP26
6. 3 Reg	mounted on P.W. Board PP36
7. Headphone Amp	mounted on P.W. Board PR16
8. Power Switch	mounted on P.W. Board PS16
9. Ten Key	mounted on P.W. Board PS26
10. Servo	mounted on P.W. Board PV16
11. Servo Module	mounted on P.W. Board PV26
12. Photo Reflector	mounted on P.W. Board PV36
13. Display	mounted on P.W. Board PY16
14. Lamp	mounted on P.W. Board PY26


How to use this service manual

- The "Common parts" which Marantz Japan, Inc. has established are eliminated from this service manual.
- These "Common parts" are applied to all models in the service manuals arranged and issued by MJI.
- To indicate clearly the common parts in the schematic diagram, a line is drawn above or under the Ref. Desig. No. of applicable parts.
- "Common parts" can be supplied from the Marantz service center as ever. In case of ordering, please establish the parts number of 12 N/C'S following the procedure mentioned in this service manual "How to establish the parts number for common parts".

- 1) Please correctly write the parts number of 12 N/C'S following the rule.

ELECTRICAL MEASUREMENTS AND ADJUSTMENTS

Specification measurement

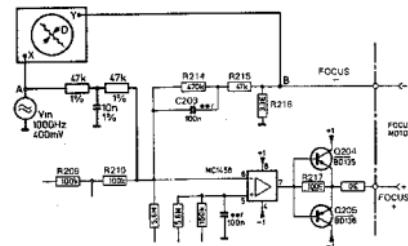
To measure the specification use can be made of audio test disc 4822 397 30085.

Use a 7th order filter, e.g. 4822 395 30204 (see Figure), to measure:

- Total harmonic distortion (THD).
- Intermodulation distortion.
- Signal-to-noise (S/N).

Laser power supply (POS. VOLT. SH.)

For check and preliminary adjustment of the laser supply see service manual C.D.M.-1.


Adjusting the laser supply

Play track 1 of test disc 4822 397 300096 (disc without defects).

Connect a DC voltmeter across resistor R309 on the servo PCB (= on emitter of transistor Q315 and ground).

Adjust the laser power supply with resistor 3180 until the voltage across resistor R309 is 575 ± 75 mV.

Adjusting the focus bandwidth

Make a measuring arrangement according to the figure.

Play track 1 of test disc 4822 397 30096 (disc without defects).

Adjust trimming resistor 3158 on PRE. AMPL. + LASER PCB for a 180° phase difference between signals A and B. This corresponds with a minimum distance D in the Lissajous pattern.

$R=47 \text{ k}\Omega - 1\% 5322 116 54671$

$C=10 \text{ nF} - 1\% 5322 121 54154$

Check of the AGC and offset circuits

(See SERVO PCB)

Play track 1 of test disc 4822 397 80096 (disc without defects).

The voltage between pin 7 of IC Q303 (4/4) and \perp should be $-4 \text{ V} \pm 2 \text{ V}$.

The voltage between pin 8 of IC Q302 (2/4) and \perp should be $0 \text{ V} \pm 2 \text{ V}$.

INITIATION OF THE SERVICING PROGRAMME OF THE μ P

— Servicing position "0"

Simultaneously depress the STOP, PLAY and SEARCH \gg buttons. Keep these three buttons depressed while the mains voltage is switched on. This is the STAND-BY mode, "0" appears on the display.

In this state it is possible to move the arm by means of the SEARCH FORW and SEARCH REV keys with a minimum torque to the outside and the inside resp.

This enables a check of the free motion of the arm across the disc.

— Servicing position "1"

From servicing position "0" the player can be brought in servicing position "1" by depressing the NEXT key.

In this state the laser emits light and the objective starts to focus. When the focal point has been reached, "1" appears on the display.

When no disc has been inserted the objective goes $16 \times$ to and fro. Then the player reassumes servicing position "0".

As in servicing position "0" the arm can be moved across the diameter of the disc by means of the SEARCH FORW and SEARCH REV keys.

— Servicing position "2"

To be reached by depressing the NEXT key after servicing position "1" has been reached.

The turntable motor starts to run

On the display appears "2".

In preparation of the transition to servicing position "3" the arm is sent to the centre of the disc.

— Servicing position "3"

To be reached by depressing the NEXT key after servicing position "2" has been reached.

The radial control is switched on. The subcode information is ignored. MUSB is high so that the music information is released.

On the display appears "3".

(Dependent on the length of the lead-in track music will be reproduced after approx 1 min)

In this state it is possible to move the arm by means of the SEARCH FORW and the SEARCH REV keys to the outside and to the inside resp. Now the motion is controlled by the μ and the arm moves by steps of 64 tracks as long as the key is depressed.

If one of the servicing positions 1, 2 or 3 is disturbed (e.g. braking or removing the disc) the player resumes servicing position "0".

The servicing programme can be left by switching the mains switch (POWER ON/OFF) off and on. (Hardware reset).

FAULTFINDING METHOD

Preface

In course of the development of the troubleshooting guide for the Compact Disc it has become clear that a different approach from the one applied so far was required.

For, it is no longer possible to use the classic strategy, i.e. basing the troubleshooting method on a number of possible faults in the unit.

Practice has shown that a certain fault, with the associated symptom, can have a wide variety of causes. The reason is that this player incorporates a number of feedback loop configurations—which, moreover, might affect each other—and this impedes the obvious measurements.

The method below divides the player from diagram point of view into nine clearly distinguishable sub-groups and by performing some measurements, the sub-group being in failure can be isolated. Later the defective circuit can be further examined according to the method given.

PRACTICAL HINTS

Test discs

It is important to handle the test discs with great care. For, the troubles (black dots, fingerprints, etc.) are exclusively and unambiguously positioned.

Damage can cause additional drop-outs etc. and as a result the conscious fault on this disc is no longer exclusive.

In that case it is no longer possible to check e.g. whether the track detector is working correctly.

Measurements on op-amps

In the electronic circuits of the servo systems op-amps are frequently being applied. These op-amps can be used as amplifiers, as filters, as invertors, as buffers, etc.

In those cases where feedback is applied in one way or the other, the voltage difference at the differential inputs inclines to zero. This applies both to DC

and to AC.

The cause can be traced back to the properties of an ideal op-amp ($Z_i=\infty$; $G=\infty$; $Z_o=0$).

In practice this means that it is nearly impossible to perform measurements on the inverting and non-inverting inputs of op-amps if one input is directly connected to ground.

In those cases only the output signal will be measurable.

That is why in most cases no AC voltages can be given to the inputs.

The DC voltages at the inputs are equal.

Stimulating with "0" and "1"

In the troubleshooting method certain pins should in a number of cases be connected to ground or be connected to the power supply voltage.

This way of acting offers the possibility to overrule certain circuits and to stimulate others.

In this way the diagnose time can be reduced.

In a number of cases the relevant pins appear to be op-amp outputs.

In this respect it should be mentioned that the outputs of the used op-amps are short-circuit protected.

This implies that the output of an op-amp can be made low (= usually ground potential) without consequences.

On the other hand should be pointed out that it is **not allowed** to connect the output of an op-amp directly to the **power supply voltage**.

I/Os of microprocessors should not be connected directly to power supply voltage.

These I/Os are allowed to be brought to "0" in case this is mentioned explicitly.

Selection of ground point

It is very important to select a ground point as close as possible to the test point.

Conditions for injecting

— It is should be pointed out that injection of levels or signals from a strange source is **never** allowed to occur when the power supply voltage is lacking in the circuit in question.

— Naturally, the injected level is never allowed to exceed the power supply voltage of the circuit in question.

Continuous burning of the laser

— Disconnect plug J203 on the servo PCB and connect pin J203-9 (laser) of the cable connector to ground.

Now the focus loop and the radial loop are interrupted as well:

J203-7 (RE1 = Radial Error 1), J203-8 (RE2 = Radial Error 2) and J203-10 (FE = Focus Error).

The laser also burns continuously when the set is in service loop 2.

Irregular working of the display

Irregular working of the display when the set is opened and playing, might have been caused by incidental body effect in the region of the crystal oscillators.

Switching "off" and "on" of the mains voltage will eliminate this effect.

Indication of checkpoint

In the circuit diagram the checkpoints have been given a serial number (e.g.), to which the troubleshooting method will refer.

For oscilloscopes, amplitudes, time bases and position of set, see tables of checkpoints.

GENERAL CHECKPOINTS

In the detailed troubleshooting method following below a number of general conditions, required for proper functioning of the player, will **not** be repeated. Before starting the detailed troubleshooting method these general points should be checked.

- Ensure that disc and objective are clean (remove dust, fingerprints, etc.) and use undamaged discs.
- Convince yourself of the presence of the clock frequencies, viz:
 - 12 MHz for μ P servo (pin 18)
 - 11.2896 MHz for FILTER-B IC (pin 19)
 - 2.82-5.64 MHz for free-running PLL circuit on the DECODER-A IC (pin 27)
 - 3 MHz for control and display μ P (pin 33).
- Check whether all power supply voltages are present and have the correct level.
See PCB drawings.
- Check whether the two mutes (KILL and MUSB) are inactive so that data are nowhere interrupted.
This should go high about 2 seconds after the mains voltage is switched on.
MUSB=pin 23 of the FILTER-B IC on the decoder PCB.
Normally this pin is high during play and low during search.

DETAILED TROUBLESHOOTING METHOD

A number of quick and efficient checks immediately give a definite answer on poorly functioning sections of the player.

To check the servo systems four service loops have been built in μ P Q271.

Before calling in service loops, it should be checked (position power on) whether the bus (clock, data: pin 17 and 10 or 11 of μ P Q271 resp.) is free. In other words, checking whether these lines do not have a short circuit to ground or supply voltage (level low or "high"). In such a case the buttons cannot be operated.

For troubleshooting the step-by-step method below is followed.

First step (with disc on turntable)

Bring the player in service loop 1 or 2

If one of the conditions for service loop 1 or 2 is not met, the questions below should be answered positively in the sequence given.

In practice this means that when one question has been answered positively, all the preceding circuits, to which the questions refer, are functioning well.

Example: if the eye pattern is present, we may conclude that the laser is working, the laser is in focus and that the turntable motor is running.

Note:

In some situations, certain faults in the radial servo circuit affect the focus servo circuit (e.g. if supply voltage +1 of IC Q301 in the radial circuit fails, the focus coil starts oscillating).

To determine if this situation exists, connect point on the servo PCB to ground.

In this way, the influence of the radial servo circuit on the focus servo circuit can be eliminated.

- Is the laser giving light?
(Test method: see sub A)
- Is the angle disc-light pin within the tolerance, i.e. $90^\circ \pm 0.5^\circ$?
(Test method: see description mentioned in chapter "Mechanical measurements and adjustments" of the C.D.M. manual).
- Is the laser giving sufficient light?
(Test method: see sub C).
- Does the objective come in focus?
(Test method: see sub D).
- Is the turntable motor running and, if so, is it running at the correct speed?
(Test method: see sub E).

If the answers to questions 1 or 2 through E are positive, it should be possible to bring the player in service loop 1 or 2.

Second step (with disc on turntable)

Bring the player in service loop 3.

This means that the eye pattern on point (on the decoder PCB has to be stable, while MSC on point on the servo PCB has to be more stable too).

(Test method: see DECODER-A IC)

Note that the set is not only tracking a song in loop 3, but also playing the song, provided the digital circuit is working (however music cannot be heard).

If this does not work, return to service loop 2 and answer the questions below positively in the sequence given.

- Are D₁ and HFL detectors functioning?
(test method: see sub F)
- Is track detector functioning?
(test method: see sub G)

H. Is the radial control functioning properly?
(test method: see sub H)

If the answers to questions F, G and H are positive, it should be possible to bring the player in service loop 3.

Third step (with disc on turntable)

Note that the set is not only tracking a song in loop 3, but also playing the song, provided the digital circuit is working (music cannot be heard).

If this does not work, return to service loop 3 and answer the question below positively.

I. Is TL functioning, i.e. polarity of RE?
(test method: see sub I)

J. Is information transmission subcode functioning?
(test method: see DECODER-AIC)

Check the Q-channel signals.

If the answers to questions I and J are positive, it should be possible to bring the player in the Play mode.

Fourth step (with disc on turntable)

If no music is heard in position "play" or service loop 3 answer the last question.

K. Is digital decoder circuit functioning according to specification (test method: see II. FILTER-B IC and V. KILL CIRCUIT)

Sub. A. IS THE LASER GIVING LIGHT?

Test method

Bring the player in service loop 1 without placing a disc on the turntable. Now the laser is giving light for an unlimited period of time.

Another method for which the laser gives light during an unlimited period of time and the objective is standing still, is disconnecting plug J203 on the servo PCB and connecting point J203-9 of the cable connector to ground.

In case of power-on the laser should burn. This is checked with the aid of a light-sensitive component which is slightly screened from ambient light.

Hereafter follow some examples:

a. Connect photosensitive diode type BPW4, code number 4822 12032108, with correct polarity to an analogue multimeter (e.g. PM2412) at range 10 k Ω .

If the laser is burning, the meter will give virtually full scale deflection.

b. Connect LDR, code number 4822 116 10002, to digital multimeter PM2517E.

If the laser is burning, the resistance will drop to approx. 8 k Ω .

If the laser is not giving any light, proceed to Annex 1.

Sub. C. IS THE LASER GIVING SUFFICIENT LIGHT?

Test method (Test points on Pre-amp PCB)

— interrupt the collector of Q203 on the servo PCB or ground the-side of electrolytic capacitor C201. Disconnect plug J203 on the servo PCB and connect pin **J203-9 (laser)** of the cable connector to ground.

Now the laser should continue to give light while FE, RE1 and RE2 are interrupted.

— Place disc on turntable and switch power on.

— Directly inject with AF generator ($Z_i \leq 600$ Ohms) to test point \triangleleft FE a sine-wave signal between 25 and 60 Hz (exact frequency is player-dependent) and $2V_{pp}$.

— Select such a frequency that the monitor diodes of the light pin give output signals as indicated on test points \triangleleft , \triangleleft , \triangleleft and \triangleleft . Amplitude 40-80 mV.

— If the amplitude is not sufficient, proceed to Annex 1.

Sub. D. IS THE OBJECTIVE COMING INTO FOCUS?

Test method

• No disc on turntable

Switch power on and actuate Play button.

Now the arm should move inwards. Immediately after that the objective should move two times up and downwards (this happens during searching of the focusing point).

After this the action will stop.

These actions are software-controlled from the servo μ P. If this is not working, check μ P servo, end stage focus circuit or focus coil.

• With disc on turntable

Quick test procedure:

For a rough check on the working of the focus circuit, proceed as follows:

— place disc on turntable.

— set player in service loop 1.

— remove disc from turntable.

— now examine if the objective focuses by bringing a reflective object (e.g. mirror) above it.

Detailed test procedure

— Check **Q203** (on servo PCB) as follows:

Check whether FN becomes, with each passage of the nominal focusing **low for a short period of time**. Only when focusing point FN has been found, FE will be released via Q203 (base will become negative).

Check whether base of Q202 is driven low from servo μ P (= FCO). If not, check servo μ P. If so, proceed.

— Test focusing circuit as follows:

Interrupt the collector of Q203 on the servo PCB and disconnect **plug J203** on the servo PCB. Con-

nect pin **J203-9 (laser)** of the cable connector to ground.

Now the laser is burning continuously, FE has been released and the focus loop has been interrupted at test point **◇** (=FE) on servo PCB.

Testing of circuit, between test point **◇** and focusing coil

(Test points on servo PCB)

- Directly inject a sine-wave signal of 10 Hz, $2V_{pp}$, to test point **◇** by means of an AF generator ($Z_i \leq 600 \Omega$).
- Check visually whether focusing coil "—" and thus objective too "—" responds.
- Check whether this voltage is $0.6 V_{pp}$ on test point **◇**.
- Check whether this voltage is $6 V_{pp}$ on test point **◇**.
- Check whether this voltage is $5 V_{pp}$ on test point **◇**.

Testing the subchassis (Test points on Pre Amp PCB, injection point on servo PCB)

- Place a disc on the turntable.
- Directly inject to test point **◇** a sine-wave signal between 25 Hz and 60 Hz at $2 V_{pp}$ by means of an AF generator ($Z_i \leq 600 \Omega$). The exact frequency is player-dependent.
- Select such a frequency that the monitor diodes of the light pin give output signals as indicated on test points **◇**, **◇**, **◇** and **◇**.
- Check test points **◇**, **◇**, **◇** and **◇**.
- Check test point **◇**.
- Check test point **◇**.

Is the same as signal on test point **◇** but amplitude is dependent on position of potentiometer 3138.

If all the checks are positive, close focus loop (insert plug J203). Now the focusing circuit should be able to operate. Reconnect transistor Q203.

It should be noted here that the amplitudes on test points **◇** through **◇** are slightly dependent on the characteristic of the monitor diodes.

Sub. E IS TURNTABLE MOTOR RUNNING AND, IF SO, IS IT RUNNING AT THE CORRECT SPEED?

Test method (Test points on servo PCB)

- Place disc on turntable and bring set in service loop 2.
- If focusing point is found, check whether FCO is low on point **◇**.
If not, check focus circuit sub D.
If so, proceed.
- Now only power on, disconnect plug J201 on the servo PCB and check MSC=point **◇** of cable connector J201, or point **◇** on the decoder PCB.

If not, check Decoder-A IC (Q501) circuit.
If so, proceed.

- Reconnect plug J201, disconnect plug 15 on the preamplifier PCB and inject a DC signal to the cable connector of the motor or directly to the turntable motor.

The turntable motor should be running now.
(A DC voltage of 2.5 V approximately corresponds with the rpm during scanning of the innermost tracks).

In this condition the player should be brought in service loop 2 (depress Stop button while mains voltage is switched on).

If DC < 2.5 V Figure G should be visible on test point **◇** (servo PCB).

If DC > 2.5 V Figure H should be visible on test point **◇**.

If so, check turntable control circuit (circuit from point **◇** to turntable motor).

If not, check whether MSC is released by means of SSM at pin 16 of IC Q271.

This connecting plug J201 on the servo PCB and measure on pin 12 of cable connector J201.

If MSC is working now, check circuit around IC Q271.

- Take player out of service loop 2, depress Power-on button and then Play button and check eye pattern on point **◇** (on decoder PCB).

To stabilize the eye pattern, bring light pin above tracks by hand, or by briefly (5 s) depressing Fast Forward button.

If eye pattern not point **◇** is not present or unstable, check RF pre amplifier (see Annex IV).

- If eye pattern is correct, proceed.

— Check whether point **◇** (=HFLS) on the servo PCB is correct in service loop 2 (see Figure Y). If not, check HFLS detector circuit (is circuit between point **◇** and **◇**). If so, proceed.

Take player out of service loop 2 by depressing the power button.

- Check locking-in of PLL circuit of Decoder-A IC. (See CEFM signal pin 27: point **◇**)

If PLL is locking-in, proceed.

- Check timing signals on output of Decoder-A IC as indicated in "DECODER-A IC".

Is the digital decoder circuit functioning according to specification? If timing signals are correct, proceed.

- If MSC is still not functioning properly, replace the relevant specific digital IC according to the trial and error method with the aid of service IC box.

— MSC has to be present now.

Sub. F. ARE THE DO and HFLS DETECTORS FUNCTIONING?

Test method (Test points on servo PCB)

- Starting point is:
HFLS = 1 when spot is exactly on track
HFLS = 0 between tracks (e.g. during track jumping)
DO = 0, or DO = 1 in case of drop-out
DO = 1, or DO = 0 when there is no drop-out.

Approximative method

(applicable in service loop 2)

- Place disc on turntable.
- Bring player in service loop 2.
- Check whether DO (test point \triangle) is not continuously "high". Normally test point \triangle is "low", however small spikes of approximately 100mV are present in case of scratches on the disc.
- Check HFLS (test point \triangle)

Precise method

(can be checked in playing set only)

- Place test disc 5A on turntable. Switch power on and depress Play button.
- Select track no. 10: Check point \triangle . HFLS pulses should be present.
- Select track no. 15: Check point \triangle . DO pulses should be present. With this track the HFLS pulses on point \triangle should also be present.
- In case of track jumping HFLS pulses are always present on point \triangle .

Sub. G. IS TRACK DETECTOR FUNCTIONING WELL?

Test method (Test points on servo PCB)

Switch off the offset circuit:

Loosen resistor 3315 (at the side where it is in contact with pin 8 of IC Q302). Mount a 47 k Ω trimming potentiometer between +1 and -1 supply voltage (for example between pins 4 and 11 of IC Q302). Connect the wiper of the trimming potentiometer to the loose side of resistor 3315.

- Place a disc on the turntable.
- Bring the set in service loop 2.
- Adjust the signal on test point \triangle symmetrically round 0V by means of the external 47 k Ω trimming potentiometer. The amplitude of the signal may change during this adjustment.
- Measure F.S on point \triangle . Here too the frequency variation depends on the eccentricity of the disc.
- Check point \triangle .
- Check point \triangle . Signal cannot be triggered.
- Check point \triangle .
- Switch the offset circuit on again.

Sub. H. IS THE RADIAL CONTROL FUNCTIONING PROPERLY?

Attention: The offset circuit (d-multipuller) and the AGC circuit (k-multiplier) are correction circuits. This means that under optimal conditions (new dslc, minimum tolerances of components) the set may be working properly even if a fault is preset in offset or AGC circuit.

Test method (Testpoints on servo PCB)

- a. Place disc on turntable.
- b. Switch off AGC circuit (k-multiplier) and switch off offset circuit (d-multiplier).

Method:

Switching off AGC circuit: interconnect points \triangle and \triangle of IC Q309.

- Place a disc on the turntable.
- Bring the set in service loop 2.
- Adjust the signal on test point \triangle symmetrically round 0V by means of the external 47 k Ω trimming pot. The amplitude of the signal may change during this adjustment.
- c. Bring set in service loop 3.
At this moment there is a high probability that the set is working.
If so, check d and k factor (see Annexes II and III).
If not, proceed.

- d. Bring set in service loop 2 and check signal on point \triangle .
The AC-component has to be 12-14 V symmetrically around a DC level of zero volt.
If this is correct, proceed to e).
If this is not correct check following testpoints
 \triangle , \triangle : value should be 0.7 V_{pp}
 \triangle : value should be 0.2 V_{pp}
 \triangle : value should be 0.25 V_{pp}
 \triangle : value should be 20 mV_{pp}
 \triangle , \triangle : value should be 800 mV_{pp}

Note:

The frequency variation strongly depends on the eccentricity of the disc.

If points \triangle + \triangle are OK, check point \triangle again.
If \triangle is OK, proceed.

- e. Check point \triangle (is RE + 650 Hz).
Value should be V_{pp} If so, proceed.
When the set is in the normal stand-by position 650 Hz at 300 mV is present on point \triangle .
f. To check radial output stage, do not use a disc, only power on. Inject on points \triangle and \triangle respectively a sine-wave signal of 8 to 10 Hz 3 V_{pp}.
Then the radial motor will go back and forth.

At this moment radial tracking must be possible in service loop 3.

- Switch the AGC circuit on again.
If the original fault symptom is still present proceed

to Annex III:

Check of the k-factor.

- Switch the offset circuit on again.

If the original fault symptom is still present, proceed to Annex II.

Check of the d-factor.

Sub. LIS INT FUNCTIONING, O.E. POLARITY OF RE?
(Measure points on servo PCB)

Test method

Bring player in service loop 3 and measure INT on pin 12 of μ P servo IC Q271.

A square-wave voltage (0-5V) should be measured on this pin. As a result of the frequency variation this square-wave is hard to trigger.

I DECODER-A IC

• Check the MC signal (pin 17; test point ④)

- In stand-by mode, the MC signal (Motor Control) corresponds to the figure below.

Note:

The repetition time of the MC signals is 11.3 μ sec.

- Place a disc on the turntable.
- In position PLAY or SERVICE POSITION 3, the MC signal corresponds to the figure below.

Note:

During start-up the duty cycle is 98%, then the duty cycle of the signal becomes about 50%.

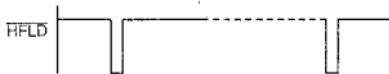
See also Service Manual CDM-1: "Check of the motor control".

• Check the HF signal on test point ⑥ (eye pattern)

- Place a disc on the turntable.
- The HF signal should be present and be stable in the PLAY mode and in:
SERVICING POSITION 3 after the run-in track has been read.
- In SERVICING POSITION 2 and during reading of the lead-in track the HF signal is not stable.

Position of oscilloscope 0.5 μ s/DIV.

Amplitude \approx 1.5 V_{pp}


• Check the HFLD signal on test point ⑧

- Place a disc on the turntable.

— In the PLAY mode and in SERVICING POSITION 3 the HFLD signal is "high"; however, minor pulses may be present and in cause of disorders on the disc.

— In SERVICING POSITION 2 and during playback of track no. 15 of test disc 5A HFLD pulses are visible.

Position of the oscilloscope 5 ms/DIV

• Check if the MUTE signal (pin 11; test point ⑦) is "high"

When Filter-B IC is applied, the MUTE input will not be used.

• Check the CEFM signal (pin 27; test point ⑨)

- Place a disc on the turntable.
- In stand-by mode (only the main switch is depressed), the frequency lies between 2.82 MHz and 5.64 MHz.
- In the position PLAY and SERVICE POSITIONS 2 and 3, the frequency is 4.32 MHz.

• Check the Xin signal (pin 19; test point ⑩)

- The Xin frequency is 11.2896 MHz.
- If this frequency deviates, check test point 70; Xout signal, on Filter-B IC.
This frequency should also be 11.2896 MHz.

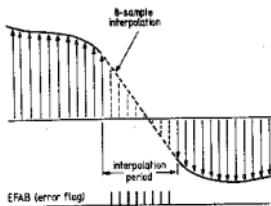
• Check the timing signals meant for Filter-B IC

- Place a disc on the turntable.
- Select one of the following positions:
SERVICE POSITION 2 or 3, or position PLAY.
- Trigger the oscilloscope with the WSAB signal (test point ④, pin 39).
- Check signals:

WSAB at test point ④ (pin 39)
(Word Select from Decoder-A to Filter-B)
CLAB at test point ④ (pin 38)
(Clock from Decoder-A to Filter-B)

and their interrelation.

- There must be activity at test point ④ (pin 37); DAAB signal (DATA from Decoder-A to Filter-B).

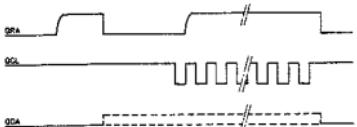


- Check the **EFAB** signal (Error Flag from Decoder-A to Filter-B) at test point \triangle (pin 36)

- Place test disc 5A on the turntable.
- During playback, EFAB pulses should be present at test point \triangle for soft braking of the disc and during fast search (F FORWARD, F REVERSE).

Note:

Filter-B IC is capable of interpolating linearly 8 successive EFAB pulses.


- Check the **Q-channel signals**

- Place a disc on the turntable.
- Select one of the following positions: SERVICE POSITION 3 or position PLAY.
- Trigger on the QRA signal (Q-channel Request Acknowledge) test point \triangle ; pin 30.
- Check signals QRA at test point \triangle (pin 30). QCL at test point \triangle (pin 31) (Q-channel-clock) and their interrelation.
- There should then be activity at test point \triangle (pin 29) QDA (Q-channel Data).

Note:

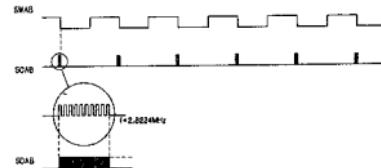
The QRA request is initiated by decoder μ P (QRA "high"). Then Decoder-A answers this request (QRA goes "low"). With the next leading clock pulse (QCL) the QRA signal is rendered "high" again by the decoder μ P.

As soon as the decoder μ P has taken in enough information via QDA, QRA will go low again. That is why the QRA times vary each time.

- Check the **SSM** signal (test point \triangle ; pin 33) = Start-Stop turntable motor

- Motor start pulse when test point \triangle is "high" for ≥ 0.2 sec.
- Motor start pulse when test point \triangle is "low" for ≥ 0.2 sec.

Note:


After the motor start pulse, SWAB information (Subcoding Word clock) will become visible at this point. The period time of that signals is 136 μ sec.

- Check the subcode clock signals

- Place a disc on the turntable.
- Select one of the following positions: SERVICE POSITION 3 or position PLAY.
- Trigger the oscilloscope with the SWAB signal at test point \triangle .
- Check the following signals:
SWAB at test point \triangle ; pin 33
SCAB at test point \triangle ; pin 35 (Subcode Clock from Decoder-A to Filter B)
SDAB at test point \triangle ; pin 34 (Subcode Data from Decoder-A to Filter B)
and their interrelations.

Note:

While the burst of 10 clock pulses, appear on SCAB the Q-channel information is transferred on SDAB. Hereafter the P-bit indication follows. The P-bit "high" between two bursts of 10 clock pulses in case of pause indication and "low" in case of music indication.

- Check the **CR1** signal

The CR1 is "low" in case of track jumping. Player in position SEARCH.

- Check the **DEEM** signal (test point \triangle ; pin 32)

- Place test disc 5 on the turntable.
- During playback of track no. 14 (recorded without PRE-EMPHASIS), the DEEM signal should be "low".
- During playback of track no. 15 (recorded with PRE-EMPHASIS), the DEEM signal should be "high".

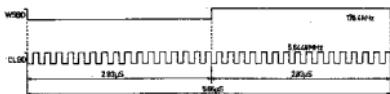
II FILTER-B IC

● Check the signals between Decoder-A IC and Filter-B IC

See sub. "I Decoder-A IC".

- Check the X IN signal (test points ⑨ and ⑩)
- Check the timing signals meant for Filter B (WSAB, CLAB, DAAB signals; test points ⑪, ⑫ and ⑬)
- Check the EFAB signal (test point ⑭)
- Check the subcode clock signals (SWAB, SCAB, SDAB signals; test points ⑮, ⑯ and ⑰)

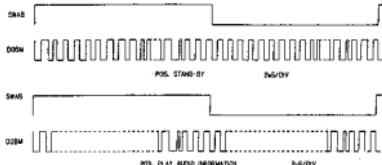
● Check the timing signals between Filter-B IC and DAC IC


- Place disc on the turntable.
- Select one of the following positions: SERVICE POSITION 3 or position PLAY.
- Trigger the oscilloscope with the WSBD signal (Word Select from Filter B to DAC) test point ⑲ (pin 18).

Check the following signals:

WSBD at test point ⑲; pin 18

CLBD at test point ⑳; pin 16 (Clock signal from Filter B to DAC) and their interrelation.


If an Audio disc is used, there should be activity at test point ㉑ (pin 15) DABD signal (DATA from Filter B to DAC). If a disc with Digital Data (CD-ROM) is used, this point is continuously switched "low" by transistor Q537. In that case the word "data" appears on the display.

● Check the DOBM signal (Digital Output)

- Place a disc on the turntable.
- Select the stand-by mode (only mains switch depressed).
- Trigger the oscilloscope with the SWAB signal (test point ㉒).
- Check the DOBM signal (test point ㉓; pin 14). An empty audio signal has a fixed pattern. See drawing, "Stand-by".
- Select the PLAY mode.

Check the DOBM signal. See drawing "PLAY".

● In position SEARCH the ATSB signal is "low" test point ㉔; pin 22 (Attenuation Audio Signal)

- When the "μP panel" is applied, (a sub-printed circuit board) that houses IC Q271, test point ㉔ is not connected.

● Check the MUSB signal test point ㉕; pin 23 (Soft Mute)

This signal is "low" in positions:

PAUSE

NEXT or PREVIOUS when jumping from one track to another.

Fast SEARCH when the Search button is kept depressed for some time.

III DAC IC (Dual Digital Analog Converter)

● Check the signals between Filter-B IC and DAC IC

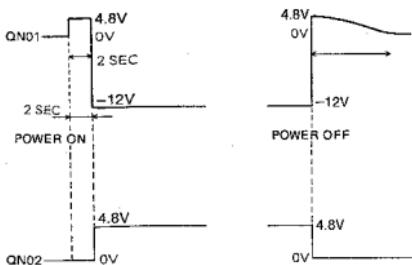
See sub. "II Filter-B IC".

- Check the timing signals between Filter-B IC and DAC IC.

● Check the output of the OP-AMP after the DAC IC

- Place a disc on the turntable.

- In position PLAY or in SERVICE POSITION 3, the analog (music) signal should be present at the output of the OP-AMP, after the lead-in track has been read.


IV DEEM CIRCUIT

● Check DEEM circuit

- Place test disc 5 on the turntable.
- During playback of track no. 14 (recorded without PRE-EMPHASIS) the DEEM signal at test point ㉖ should be "low".
- During playback of track no. 15 (recorded with PRE-EMPHASIS), the DEEM signal at test point ㉖ should be "high".
- During playback of track no. 14 the analogue signal should be present at the source of R564 (test point ㉗) and R565 (test point ㉘).
- During playback of track no. 15 the analog signal at the source of R564 (test point ㉗) and R565 (test point ㉘) should be 0 V.

V KILL CIRCUIT

— During switching on and off the mains voltage the signal on the collector of QN01 and QN02 should be as indicated in the figure below.

VI FAVOURITE TRACK SELECT (FTS)

Attention:

When repairing a CD player it is important that the contents of the FTS memory (EEPROM) should not unnecessarily be damaged.

If no complaints are reported about the functioning of the FTS, a check of the functions of the EEPROM should be left undone.

The EEPROM IC is in the Stand-by mode when CE and RDY are both high.

Selftest of the FTS μ P

During the self-test of the FTS μ P, I/O Gate will not be tested. Therefore this self-test can be executed without damage to the memory as indicated in General Test Points.

Annex I: LASER IS GIVING NO OR INSUFFICIENT LIGHT

Together with laser supply and the monitor diode the laser forms a feedback system. A defect in the laser supply might thus result in destruction of the laser. Replacement of the laser (=new light pin) will not solve anything. The new laser will also be destroyed since the original fault in the laser supply is still present.

On the other hand it is impossible to check and repair a feedback system when one link is missing.

For this reason the so-called laser simulator 3 is supplied. Code number 4822 395 30229. This laser simulator consists of a PCB which contains the laser and monitor simulation, a switch to test the On/Off position and a number of sockets.

This PCB can be connected to the laser supply instead of the light pin so that the feedback system is closed.

Repair procedure:

Since the light pin is very sensitive to static charges, care should be taken that during measurements and adjustments of the laser power supply the potential of the aids and yourself equal the potential of the CD mechanism.

Detach light pin and connect laser simulator as follows: (connections on pre-amp PCB).

Take the flex PCB out of socket 11 and connect the simulator PCB with the socket.

Remove plug 16 and insert it in the socket on the simulator PCB.

Connect the plug with 4 wires to socket 16. Take out plug 17 and insert the plug with 1 wire in socket 17.

— Switch on the mains switch and ensure that the drawer is closed or else that the tray-end-in switch on the tray PCB (S004) is depressed.

Now press the play key and check if the L-line of the servo μ P, pin 21-2 on the pre-amplifier PCB, goes "low".

— In rest position the current through the laser diode should be ≤ 1 mA. For NEG. VOLT. laser this can be checked as follows:

Set the switch on the simulator PCB in the OFF position and the mains switch in the ON position. Turn trimming resistor 3180 counterclockwise (min. R) and measure the voltage across resistor 3194 on the pre-amp. PCB.

On pre-amplifier PCBs with discrete components turn resistor 3180 clockwise (min. R) and measure the voltage across resistor 3194.

The voltage should be ≤ 15 V.

Check of laser supply control

Set the switch on the simulator PCB in the ON position and measure the voltages between points +V and -V on the simulator PCB.

Resistor 3180 clockwise (max. R): $U_{+V-V} = 225$ mV ± 45 mV. On pre-amplifier PCBs with discrete components resistor 3180 counterclockwise (max. R): $U_{+V-V} = 225$ mV ± 45 mV.

R3180 counterclockwise (min. R): $U_{+V-V} = 750$ mV ± 150 mV.

On preamplifier PCBs with discrete components resistor 3180 clockwise (min. R): $U_{+V-V} = 750$ mV ± 150 mV.

Set resistor 3180 in the mid-position.

This is a preliminary adjustment. After the simulator PCB has been removed the laser current must be adjusted.

Fine adjustment of laser current

— Playback track 1 of test disc 4822 397 30096 (Disc without defects). Connect a DC voltmeter across resistor 3308 on the SERVO PCB circuit

diagram D. Adjust the laser power supply with resistor 3308 is 575 mV \pm 50 mV.

Annex II: **CHECKING d-FACTOR**

(Test points on servo PCB)

- Switch off AGC circuit (k-multiplier) and switch off offset circuit (d-multiplier). See sub G and H.

Place disc on turntable and set player in service loop 2.

- Check points \triangleleft and \triangleleft .

Value should be 0.7 V_{pp}.

Frequency variation strongly depends on the eccentricity of the disc.

- Check points \triangleleft .

Value should be 250 mV_{pp}.

- Check point \triangleleft .

Value should be 200 mV_{pp}.

- Check point \triangleleft .

Value should be 2 V_{pp}.

- Check points \triangleleft and \triangleleft .

Value should be 10 V_{pp}.

The signals is more sine-shaped now due to filtering out of 850 Hz.

- Point \triangleleft is hard to measure since switch is in position Yoc and thus connected with input of op-amp Q302 (pin 9).

However, a signal of 200 mV_{pp} is present.

- Check point \triangleleft .

Value should be 9 V_{pp}.

Bring the player in service loop 3. With a disc on turntable and the AGC and offset-circuits are still switched off.

- Check point \triangleleft .

- Check point \triangleleft on beam A of oscilloscope and check point \triangleleft on beam B of oscilloscope while oscilloscope is triggered with point \triangleleft .

- Switch on the AGC-circuit and offset circuit.

Annex III: **CHECKING k-FACTOR**

(Test points on Servo PCB)

a. Static

Switch power on **without** depressing the Play button. I.e. RC0=high; RC0=low so switch Y_a is in position 0 and switch Y_c is in position 0.

- Check point \triangleleft .

Value should be 9 V_{pp}.

- Check point \triangleleft .

On point \triangleleft now appears a sine-wave signal of 650 Hz, 300 mV, and 180-45=360°shifted in phase relative to signal on point \triangleleft .

- Check point \triangleleft .

Value should be 1.5 V_{pp}.

- Check point \triangleleft .

Value should be 1 V_{pp}.

- Check points \triangleleft , \triangleleft , \triangleleft and \triangleleft relative to each other.

Amplitudes are 5V.

- Check integrator IC Q303 (4/4)

b. Dynamic

Insert disc, select service loop 2 and check if the signal on point \triangleleft equals to 7 V_{pp}.

- Select service loop 3.

Now RC0=high and RC0=low.

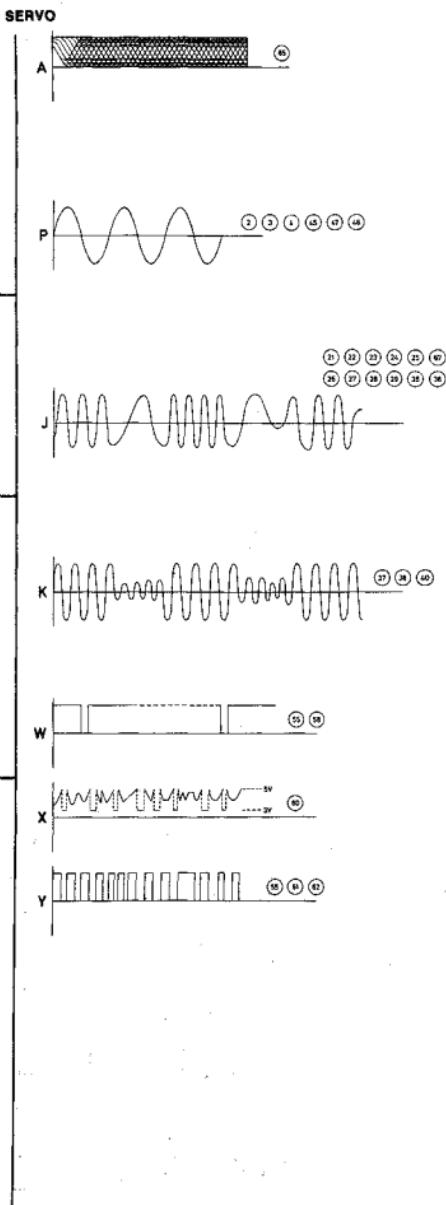
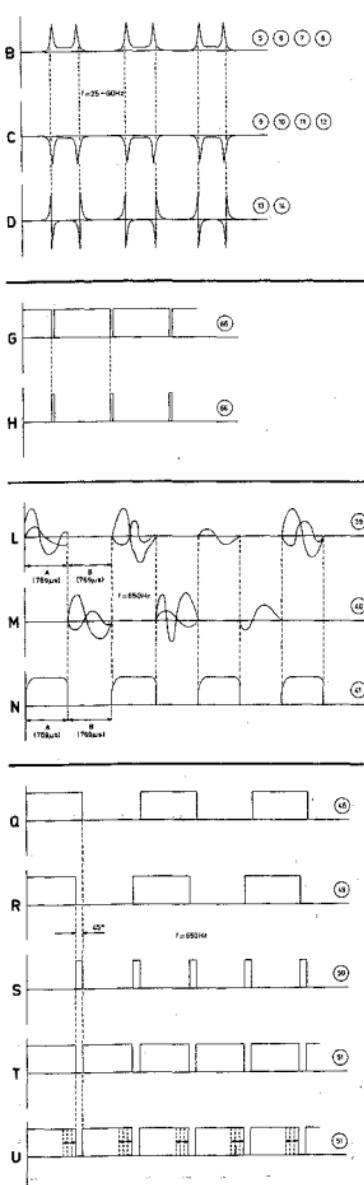
So switch Y_a is in position 1.

Switch Y_c switches at f=650 Hz.

Point \triangleleft is low; so point \triangleleft is in phase point \triangleleft .

Now fig. U should be present on point \triangleleft with duty cycle jittering round 50%.

Annex IV: **CHECKING RF PRE-AMPLIFIER**



(measure points on pre-amp. PCB)

- a. Check DC-voltages on transistor 6103, 6104, 6105, 6109, 6110, 6111.

- b. For checking sensitivity, frequency and delay characteristic, proceed as follows:

— Take flex PCBs of sockets 10 and 11.

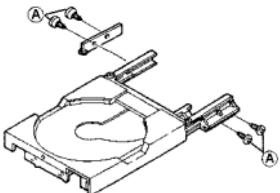
— Take plugs 18, 17, 12, 13, 14 and 15 out of sockets.

SERVO

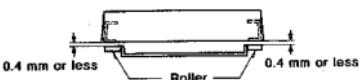
Nr.	See	Position	Amplitude	f	Time base
1		see fault finding meth.			
2	P	see fault finding meth.	0.6 Vp-p	10 Hz	
3	P	see fault finding meth.	6 Vp-p	10 Hz	
4	P	see fault finding meth.	5 Vp-p	10 Hz	
5	B	see fault finding meth.	40-80 mV	25-60 Hz	
6	B	see fault finding meth.	40-80 mV	25-60 Hz	
7	B	see fault finding meth.	40-80 mV	25-60 Hz	
8	B	see fault finding meth.	40-80 mV	25-60 Hz	
9	C	see fault finding meth.	-2 V	25-60 Hz	
10	C	see fault finding meth.	-2 V	25-60 Hz	
11	C	see fault finding meth.	-2 V	25-60 Hz	
12	C	see fault finding meth.	-2 V	25-60 Hz	
13	D	see fault finding meth.	-8 V, +8 V	25-60 Hz	
14	D	see fault finding meth.	depends on R3158	25-60 Hz	
15		see fault finding meth.			
20		see fault finding meth.			
21	J	see fault finding meth.	12-14 Vp-p		
22	J	see fault finding meth.	0.7 Vp-p		
23	J	see fault finding meth.	0.7 Vp-p		
24	J	see fault finding meth.	0.2 Vp-p		
25	J	see fault finding meth.	0.25 Vp-p		
26	J	see fault finding meth.	20 mVp-p		
27	J	see fault finding meth.	800 mVp-p		
28	J	see fault finding meth.	800 mVp-p		
29	J	see fault finding meth.	6 Vp-p		
30	P	ON	0.3 Vp-p		
31		see fault finding meth.			
32	*	see fault finding meth.			
33	*	see fault finding meth.			
35	J	see fault finding meth.	200 mVp-p		
36	J	see fault finding meth.	2 Vp-p		
37	K	see fault finding meth.	10 Vp-p		
38	K	see fault finding meth.	10 Vp-p		
39	L	see fault finding meth.	0-4 Vp-p		
40	K	see fault finding meth.	9 Vp-p		
40	M	see fault finding meth.	0-4 Vp-p		
41	N	see fault finding meth.	6 Vp-p		
45	P	ON	9 Vp-p	650 Hz	
46	Q	ON	0-5 V	650 Hz	
47	P	ON	1.5 Vp-p	650 Hz	
48	P	ON	1 Vp-p	650 Hz	
49	R	ON	0-5 V	650 Hz	
50	S	ON	0-5 V	650 Hz	
51	T	ON	5-0 V	650 Hz	
51	U	service loop B	5 V	650 Hz	
52		see fault finding meth.			
55	Y	service loop A	5-0 V		
55	W	play (with test disc)	5-0 V		
56	W	play (with test disc)	5-0 V		
57		see fault finding meth.			
60	X	service loop A	5-3 V		
61	Y	service loop A	5-0 V		
62	Y	service loop A	5-0 V		
65	A	play	1 Vp-p		
66	G	see fault finding meth.	5-0 V		
66	H	see fault finding meth.	0-5 V		
67	J	see fault finding meth.			

BLOCK DIAGRAM WARDS INFOMATION

DAC0 – DAC3	Control bit for radial circuit	SSM	Motor Start-Stop signal
DAC	Cirrent output for track jumping	MUTE	Mute signal
DO	Drop out detector signal	MUSB	Soft Mute signal
D1 – 4	Photodiode Currents	PD/OC	Phase detector-oscillator control
FE	Focus error signal	QCL	Q-channel Clock signal
HF	HF output for DEMOD	QDA	Q-channel Data signal
HFLD	HF detector output for DEMOD	QRA	Q-channel Request Acknowledge
MSC	Motor control signal	SCAB	Subcode clock Decoder-A to Filter-B
RE	Radial error signal (Amplified RE2 – RE1 currents)	SDAB	Subcode data Decoder-A to Filter-B
RE1	Radial error signal 1 (Summation of amplified currents D3 and D4)	SWAB/SSM	Subcode Word/Start-Stop Motor signal
RE2	Radial error signal 2 (Summation of amplified currents D1 and D2)	WSAB	Word select Decoder-A to Filter-B
TL/INT	Track loss signal	WSBD	Word select Filter-B to DAC
Vc	Control voltage for turntable motor	XIN	Oscillator signal in Decoder-A
ATSB	Attenuation of Audio level in search position (cueing)	XSYS	Oscillator signal OUT Filter-B
CEFM	Clock 4.3218 MHz	RDIR	Radial current switch control signal Nomal, or Revers
CLAB	Clock signal Decoder-A to Filter-B	RP	Radial puls after Track Jump
CLBD	Clock signal Filter-B to DAC	FN	Focus Neutral
CRI	Counter Reset Inhibit	ANIN	
DAAB	Data signal Decoder-A to Filter-B	HFLS	HF Loss signal
DABD	Data signal Filter-B to DAC	SRDO	Signal Radial ON/OFF for Track jump
DEEM	Deemphasis ON-OFF signal	RCO	Switch Digital to Analogue
DOBM	Digital out signal	FC1, FC2	Focus UP/DOWN signal
EFAB	Error flag Decoder-A to Filter-B	FCO	Focus ON/OFF signal
IREF	Reference current	L	Laser ON/OFF signal
		BUSY	μ -COM Communication Clock
		RXD	μ -COM Communication Recive Data
		TXD	μ -COM Communication Telex Data


Loading Tray Mechanism

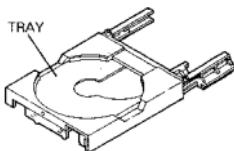
Cautions When Servicing


1. Installation of Tray and Tray Case

(Upon replacement of the tray case due to breakage, etc.)

① If the position with respect to the tray's front panel window is incorrect, loosen screws (A) and move the tray within the range of play of the hole to adjust. For the inclination of the tray, refer to diagram below.

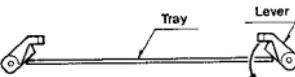
The tray should not be more than 0.4 mm above the rollers on the bottom side.



Adjust the inclination as well with screws (A).

② The tray's working force should be set to between 200 and 400 gr (when power is off).

2. If Tray has become detached downward



Take care in the following instances as the tray will become detached downward.

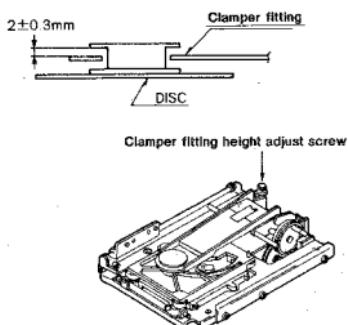
- The tray will become detached if pressed downward with the stopper mechanism removed while the drawer is open.
- The tray will become detached if pressed downward when there is no subchassis (CDM-1). (The same is true when the tray is closed with no subchassis.)

Use the following procedure to reinstall.

① Lower the lever and place the tray on the projection.

② Next, with the tray pressed down, lower the other lever and place the tray on its projection.

NOTE:

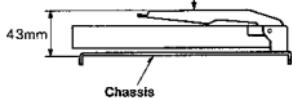

Be sure to lower only one lever at a time as the tray cannot be lifted if they are both lowered.

NOTE:

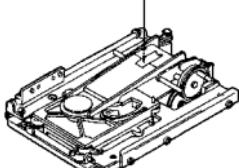
If the tray is forced back to its original position, the two pins in the tray case may bend.

3. If Subchassis (CDM-1) has been replaced

① The height of the subchassis turntable differs from one unit to the next, so it is necessary to adjust according to the height of the turntable so that the magnet clammer is not in contact with the clammer fitting. (Standard 2 ± 0.3 mm)

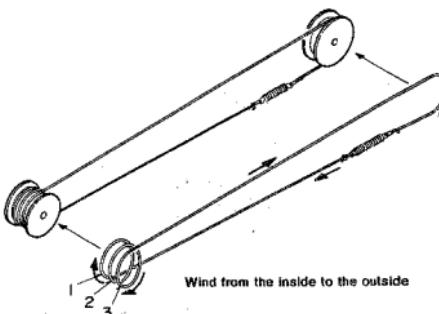


② When the height of the clammer fitting is adjusted, the position when the clammer is up must be readjusted. Use the following procedure.


Disc
clammer
position

When up Max. 43 mm
(Tray and clammer should not come
into contact when tray is opened and
closed.)

To the eye, this fitting appears
parallel to the chassis.

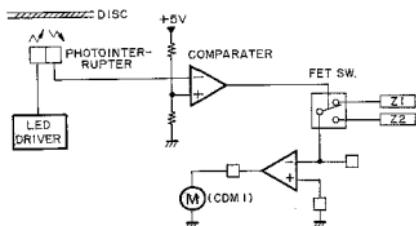


Clammer up position adjust screw

4. Others

① Refer to the diagram below to install the loading wire.

② All switches on the mechanism are of the socket type. If a switch breaks, remove the socket to replace.


③ Use to the structure of the hooks of the magnet clammer (094M), incline as indicated below to remove and install the magnet clammer when replacing it.

The narrowest hook inclines

CLV CIRCUIT FOR 8 CM SINGLE CD

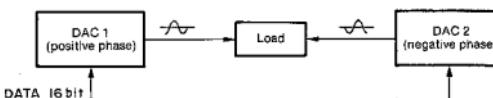
The outermost portion of a 12 cm disc is shot with light of LED, and whether or not there is reflected light from disc is detected by a phototransistor to determine 12 cm or 8 cm. At the same time, the constant of CLV servo is switched over by operating the FET SW so that it meets the disc.

Circuit Operation

	Q403	Q404	Q405	Q406	Servo Constant
12 cm	ON	OFF	ON	OFF	R255-C252, R259-C254
8 cm	OFF	ON	OFF	ON	R296-C526/R295, R298-C259

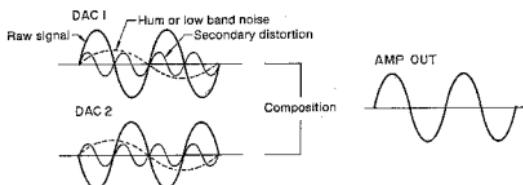
• 12 cm

With phototransistor ON, voltage of Q402-1/2 pin 3 drops and quantity of light from LED is reduced. Then, voltage of comparator (Q402-2/2) pin 6 drops, and approx. +10 V voltage is output at pin 7 to turn on Q403/Q405.

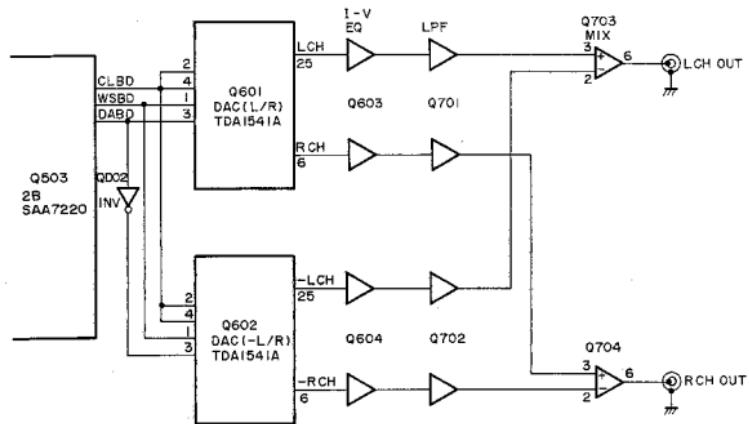

• 8 cm

Operation converse to that of 12 cm is carried out; voltage at pin 7 becomes approx. -10 V to turn on Q404/Q406.

PUSH-PULL SYSTEM


Four DACs are used, two DACs for each channel, to convert 16-bit data into analog signal.

For analog signal from DAC, in this case, DAC 1 outputs positive phase and DAC 2 outputs negative phase.



As shown above, the current to load performs push-pull operation for the signal. As a result, the same phase component is cancelled and even distortion is also cancelled.

Assuming that the load is replaced with an amplifier, the same way of thinking may be applicable. In this case, waveform composition is made in the amplifier as shown below.

The data signal (DABD) of DIG FIL is inverted and entered into the DAC (-L/R) to obtain inverted output after D-A conversion. The secondary harmonic distortion generated in DAC or amplifier can be cancelled by composing "+L CH and -L CH" or "+R CH and -R CH".

TECHNICAL SPECIFICATIONS

Audio Characteristics

Number of channels	2
Frequency response	2 - 20,000 Hz \pm 0.1 dB
Digital to analogue conversion	16 bit 4 times oversampling
Dynamic range	Better than 96 dB
Signal-to-noise ratio	101 dB
Channel separation	Better than 100 dB (1000 Hz)
Total harmonic distortion	0.0015% (1000 Hz)
Wow & flutter	Unmeasurable (quartz accuracy)
Error correction system	Cross Interleave Reed Solomon code (CIRC)
Audio output level	2 Vrms

Optical Data Read System

Laser	AlGaAs semiconductor laser
Wave length	780 nm

Signal Format

Sampling frequency	44.1 kHz
Quantization	16-bit linear/channel

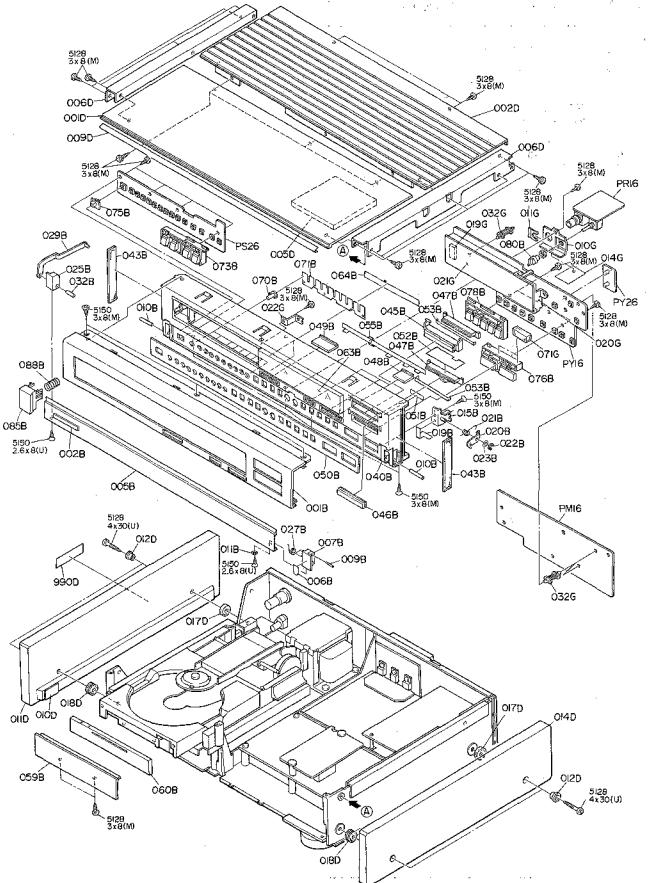
Power Supply Section

Power requirements	220/240V AC, 50/60 Hz
Power consumption	Approx. 30 W
Fuse capacitance	0.2 A

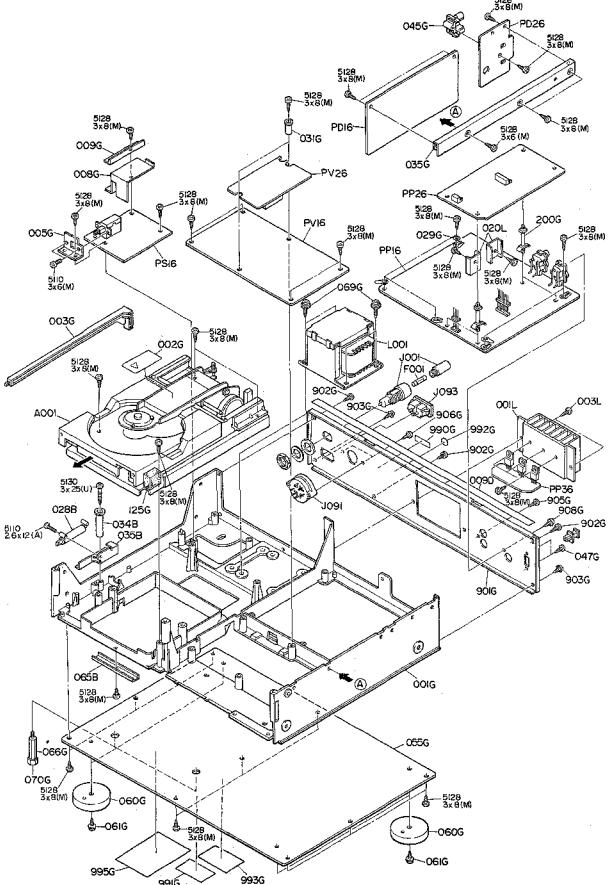
Cabinet and Others

Dimensions	
Panel Width	462 mm
Panel Height	86 mm
Depth	333 mm
Weight	Approx. 12.5 kg
Allowable operating temperature	+5°C - +35°C
Allowable operating humidity	5 - 90% (No condensation)

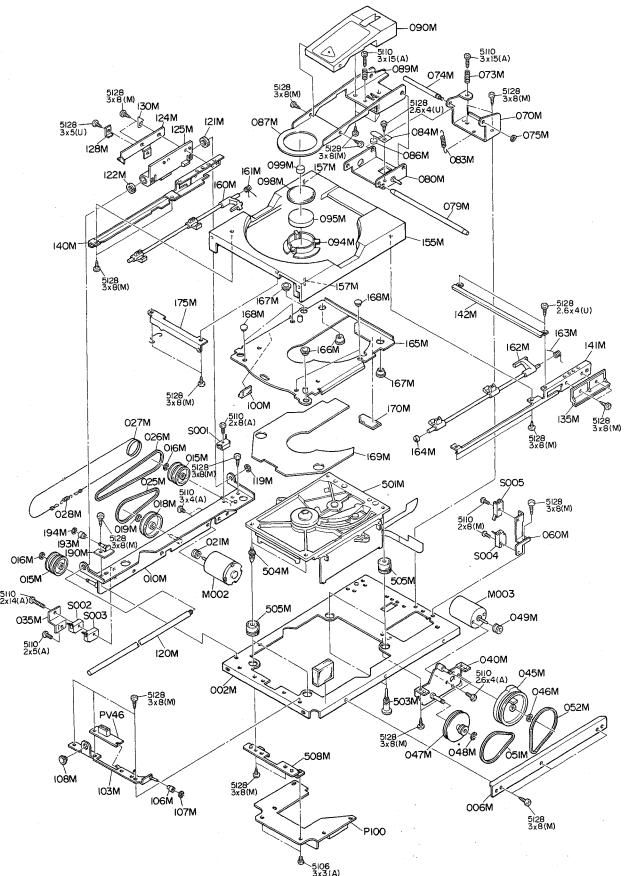
Provided Accessories


Remote control unit	1
Battery (AA/R06)	2
Audio connection (RCA pin-jack) cord	1 pair

Compact Discs


Diameter of disc	120 mm
Thickness	1.2 mm
Rotating direction	Counterclockwise (viewed from the laser pickup side)
Scanning velocity	1.2 - 1.4 m/sec
Revolution (spindle) speed	500 - 200 rpm
Playing time (theoretical)	74 minutes max. (stereo)
Track pitch	1.6 μ m
Material	Plastic (polycarbonate)

* Improvement may result in changes in specifications and design without notice.


EXPLODED VIEW AND PARTS LIST

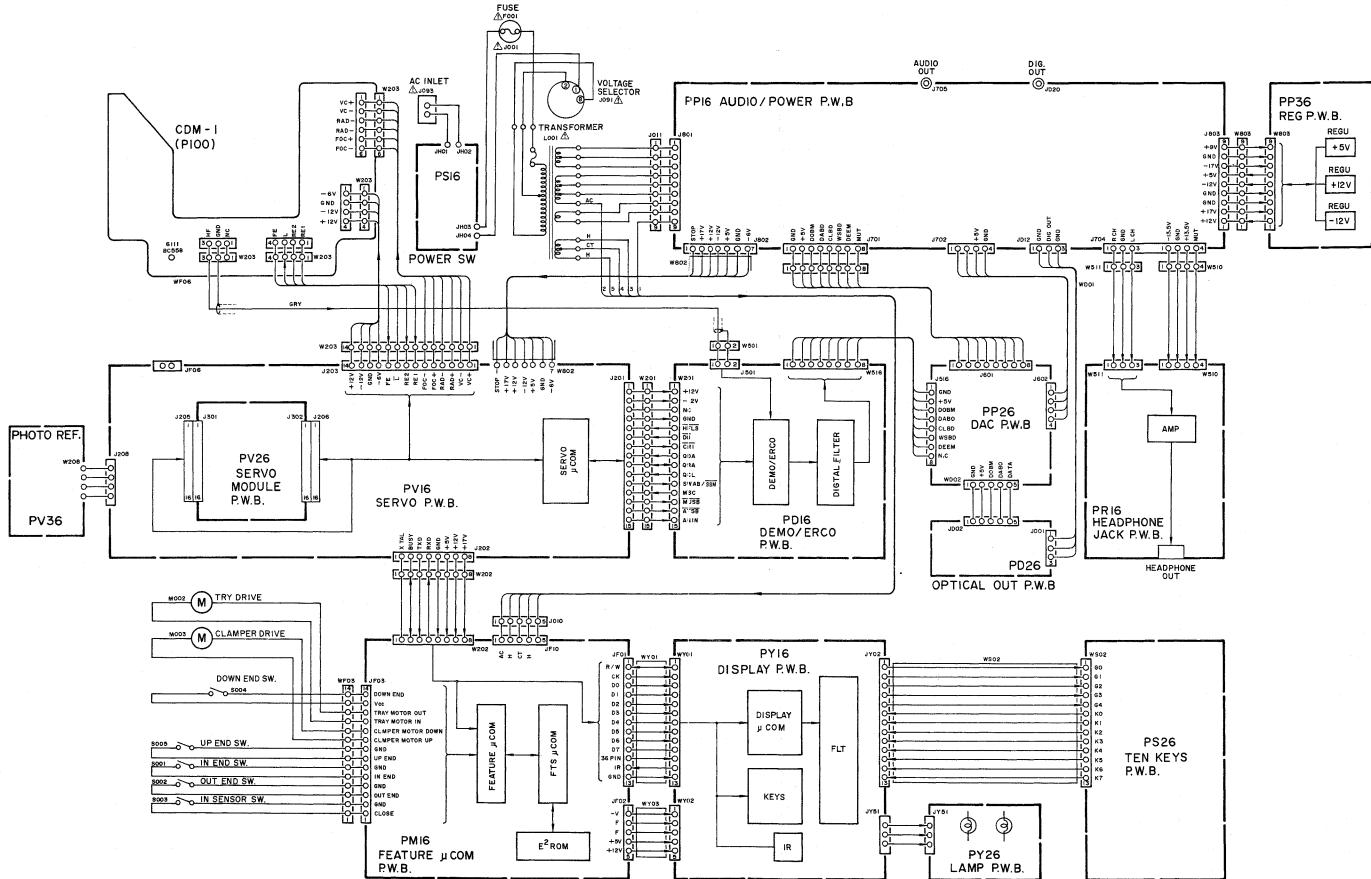
REF. DESIGN.	PART NO.	DESCRIPTION
001B	4822 444 50576 4822 444 50593	Front Panel (BLK) Front Panel (GLD)
002B	4822 454 11825	Badge
005B	4822 417 30431 4822 444 50573	Escutcheon, Front Door (BLK) Escutcheon, Front Door (GLD)
007B	4822 417 10991	Hinge (R)
009B	4822 536 52287	Shaft, Lock
010B	4822 535 52368	Shaft, Hinge
015B	4822 402 61225	Bracket (K), Lock
020B	4822 402 61096	Hook, Lock
021B	4822 492 42171	
022B	4822 532 11201	RG Ring E Type φ2.5
023B	4822 532 52081	Washer
025B	4822 417 11061	Hinge (L)
026B	4822 402 50212	Spring, Door Open
026B	4822 402 50212	Shaft (K)
028B	4822 535 52269	Shaft
040B	4822 464 50574	Chassis, Front (BLK)
040B	4822 464 50709	Chassis, Front (GLD)
045B	4822 410 25899 4822 410 26284	Button, Play (BLK) Button, Play (GLD)
046B	4822 410 25893 4822 410 26285	Button, Stop (BLK) Button, Stop (GLD)
047B	4822 381 10904	Lens
048B	4822 410 25897	Button, Track/F/T (BLK)
048B	4822 410 26281	Button, Track/F/T (GLD)
049B	4822 410 26091	Button, Open/Close (BLK)
049B	4822 410 26283	Button, Open/Close (GLD)
050B	4822 454 30831	Escutcheon (BLK)
050B	4822 454 30403	Escutcheon (GLD)
055B	4822 492 70153	Leaf Spring, Earth
059B	4822 454 30282 4822 454 30402	Escutcheon, Drawer (BLK) Escutcheon, Drawer (GLD)
063B	4822 450 51022	Window
070B	4822 410 25892	Button
071B	4822 410 25893	Lid Spring
071B	4822 410 25896	Button, Select/Cancel
075B	4822 410 25883 4822 410 26286	Knob, Timer (BLK) Knob, Timer (GLD)
076B	4822 410 25884	Button, Index/FF, REW
078B	4822 410 25895	Button, LAP/AMS
080B	4822 412 20979 4822 412 21005	Knob, Level (BLK) Knob, Level (GLD)
085B	4822 410 26142 4822 410 60142	Button, Power (K1) (BLK) Button, Power (K1) (GLD)
088B	4822 492 51927	Spring Power Button
010D	4822 426 40407 4822 426 40408	Lid, Top Cover; Front (BLK) Lid, Top Cover; Front (GLD)
002D	4822 426 51234	Lid, Top Cover; Rear (BLK)
011D	4822 426 51262 4822 444 40235	Lid, Top Cover; Rear (GLD)
012D	4822 532 11266	Side Panel (L) (BLK)
014D	4822 426 30138 4822 444 40236	Side Panel (L) (GLD)
017D	4822 402 71576	Bushing
018D	4822 532 52077	Side Panel (R) (BLK)
		Side Panel (R) (GLD)
		Buffer (L, R)
		Collar (K)

REF. DESIG.	PART NO.	DESCRIPTION
0288	4822 464 50493	Piston, Dumper
0036	4822 402 50357	Link, Power Switch
0456	4822 262 91270	Hydro, Optical
0465	4822 262 91271	B.T. Screw
060G	4822 462 41383	Leg (BLK)
	4822 462 41336	Leg (GLD)
0616	4822 502 12511	B.T. Screw
0690	4822 501 11005	B.T. Screw
2005	4822 325 20153	Screw
0905	4822 502 12510	B.T. Screw
905G	4822 502 12511	B.T. Screw
900G	4822 502 12511	B.T. Screw
003L	4822 502 12511	B.T. Screw
A001	4822 691 30222	Mechanism, Loading
△ F001	4822 252 30014	Fuse T315mA [E]
	4822 253 30127	Fuse T250mA [N, A, T, W]
△ J001	4822 265 30233	Jack, Fuse Holder
J091	4822 272 10227	Voltage Selector [E]
	4822 272 10236	Voltage Selector [N, A, T, W]
J093	4822 267 30986	Plug, AC Inlet
△ L001	4822 146 30679	Power Transformer [E]
	4822 145 80772	Power Transformer [N, A, T, W]
001Z	4822 535 60105	Adaptor

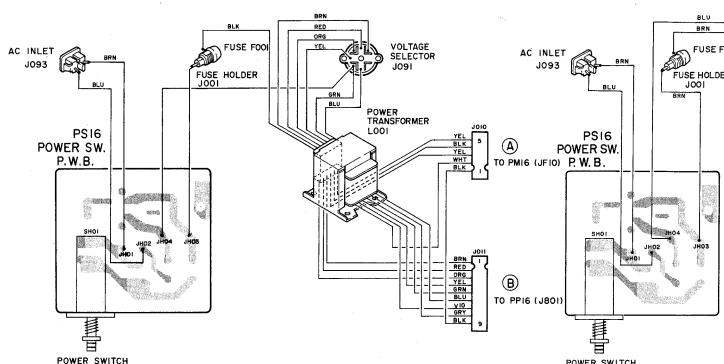
REF. DESIG.	PART NO.	DESCRIPTION
015M	4822 528 81163	Pulley, Wire Wheel
016M	4822 532 11301	RG Ring, E Type
018M	4822 528 81238	Pulley, Tray Drive
019M	4822 532 11302	RG Ring, E Type
020M	4822 532 81165	Pulley, Motor
025M	4822 358 30762	Belt, Motor
026M	4822 358 30903	Belt, Tray Drive
027M	4822 321 30338	Joint, Wire Rope
028M	4822 492 32719	Spring
045M	4822 528 30331	Cam, Clamper Drive
046M	4822 532 11301	RG Ring, E Type
047M	4822 528 81164	Pulley, Clamper Drive
048M	4822 532 11301	RG Ring, E Type
049M	4822 528 81168	Pulley, Motor
051M	4822 358 30762	Belt, Motor
052M	4822 358 30762	Belt, Cam Drive
073M	4822 492 63706	Spring, Down Adj.
074M	4822 532 92332	Shaft, Clamper Bracket
075M	4822 532 11301	RG Ring, E Type
079M	4822 535 92576	Shaft, Tray Lever
083M	4822 492 63705	Spring, Pull Down
084M	4822 492 63705	Leaf Spring
086M	4822 466 61549	Buffer
087M	4822 402 30161	Lever, Camper
089M	4822 492 63706	Spring, Up Adj.
094M	4822 402 61097	Clamper, Magnetic Case
100M	4822 532 81165	Polish Wheel, Guide
107M	4822 530 70119	RG Ring, E Type
108M	4822 532 21232	Bushing, Front Guide
119M	4822 530 80307	RG Ring, E Type
120M	4822 535 92331	Shaft, Tray Guide
121M	4822 532 81167	Shaft, Tray Guide
157M	4822 535 92576	Shaft, Tray Guide
160M	4822 402 61089	Lever (L), Tray Lift
161M	4822 492 63707	Spring (L)
162M	4822 492 61091	Lever (R), Tray Lift
163M	4822 492 63708	Spring (R)
164M	4822 532 81167	Washer
165M	4822 532 60475	Tray, Disc
166M	4822 532 11697	Bushing, Tray Guide
167M	4822 532 21232	Bushing, Tray Guide
168M	4822 532 11698	Bushing, Disc Buffer
193M	4822 528 90645	Roller
194M	4822 530 70119	RG Ring, E Type
501M	4822 691 30221	Mechanism (CDM-1)
503M	4822 535 92574	Shaft
504M	4822 535 92577	Bushing
505M	4822 532 20276	
M002	4822 361 60467	D.C. Motor, Tray Drive
M003	4822 361 60447	D.C. Motor, Clamper Drive
S001	4822 277 21132	Slide Switch, Tray In
S002	4822 277 21132	Slide Switch, Tray Out
S003	4822 277 21132	Slide Switch, Push In
S004	4822 277 21132	Slide Switch, Clamper Down
S005	4822 277 21132	Slide Switch, Clamper Up

REF. DESIG.	PART NO.	DESCRIPTION
PP16-SEMICONDUCTORS		
DN01	4822 130 31018	Diode 1SS155, etc.
DN04	4822 130 31018	Diode 1SS155, etc.
DN06	4822 130 31018	Diode 1SS155, etc.
DN08	4822 130 31018	Diode 1SS155, etc.
DN09	4822 130 31018	Diode 1SS155, etc.
DN10	4822 130 32377	Zener RD3.9E1
DN11	4822 130 32377	Zener RD3.9E1
DN12	4822 130 31018	Diode 1SS155, etc.
D805	4822 130 32366	Zener 5.6V
D806	4822 130 32366	Zener 5.6V
△ D807	4822 130 32155	Diode W068
△ D808	4822 130 32155	Diode W068
△ D809	4822 130 32155	Diode W068
△ D810	4822 130 32155	Diode W068
D821	4822 130 32191	Zener RD7.5E-B3
D822	4822 130 80425	Zener 4.7V
D823	4822 130 31018	Diode 1SS155, etc.
△ D831	4822 130 32508	Diode RL103E, etc.
△ D832	4822 130 32508	Diode RL103E, etc.
△ D833	4822 130 32508	Diode RL103E, etc.
△ D834	4822 130 32508	Diode RL103E, etc.
△ D841	4822 130 33056	Diode U058
△ D842	4822 130 33056	Diode U058
△ D843	4822 130 33056	Diode U058
△ D844	4822 130 33056	Diode U058
QN01	4822 130 42591	Transistor 2SA1175(FF, EF)
QN02	4822 130 61439	Transistor 2SB1237(R)
QN03	4822 130 42052	Transistor 2SC2785(FF, EF)
Q701	4822 209 73953	IC NJM4580DD
Q702	4822 209 73953	IC NJM4580DD
Q703	4822 209 70226	IC NJM5534D
Q704	4822 209 70226	IC NJM5534D
△ Q801	4822 130 43311	Transistor 2SC3298(O, Y)
Q802	4822 130 60839	Transistor 2SC2458(Y, GR)
Q803	4822 130 60107	Transistor 2SA1048(Y, GR)
△ Q804	4822 130 43023	Transistor 2SA1306(O, Y)
Q805	5322 130 42052	Transistor 2SC2785(FF, EF)
Q806	4822 130 42591	Transistor 2SA1175(FF, EF)
△ Q821	4822 130 61176	Transistor 2SB1357(D, E)
Q822	4822 130 42591	Transistor 2SA1175(FF, EF)
PP16-MISCELLANEOUS		
△ F831	4822 253 30018	Fuse T630mA
△ F832	4822 253 30018	Fuse T630mA
△ F841	4822 253 30024	Fuse T1.6A
JD12	4822 265 10062	Jack, 3P
JD20	4822 265 20354	Terminal, 1P; RCA
JG02	4822 256 30329	Jack, Fuse Holder
JG03	4822 267 30978	Jack, Fuse Holder
JG11	4822 256 30329	Jack, Fuse Holder
JG12	4822 267 30978	Jack, Fuse Holder
JG13	4822 256 30329	Jack, Fuse Holder
JG14	4822 267 30978	Jack, Fuse Holder
J705	4822 267 31027	Terminal, Audio Out
LD01	4822 142 60388	Pulse Transformer
L701	4822 280 20361	Relay

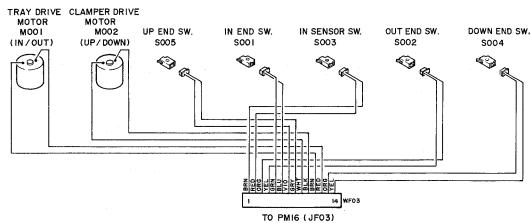
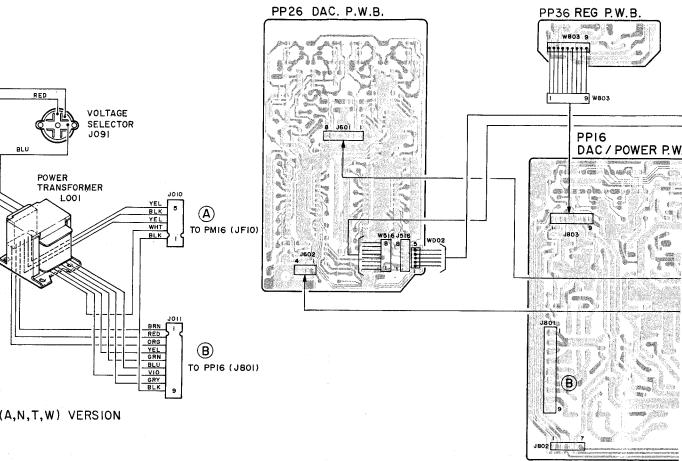
REF. DESIG.	PART NO.	DESCRIPTION
PP26-DAC CIRCUIT BOARD		
C603	4822 122 40617	Ceramic 0.1 μ F +80% -20%
C604	4822 124 22238	Elect 100 μ F -25V
C605	4822 122 40617	Ceramic 0.1 μ F +80% -20%
C606	4822 124 22238	Elect 100 μ F -25V
C607	4822 122 40617	Ceramic 0.1 μ F +80% -20%
C608	4822 122 40617	Ceramic 0.1 μ F +80% -20%
C614	4822 122 40617	Ceramic 0.1 μ F +80% -20%
C615	4822 124 90058	Elect 47 μ F -25V
C616	4822 122 40617	Ceramic 0.1 μ F +80% -20%
C617	4822 124 90058	Elect 47 μ F -25V
C618	4822 121 42713	Film 680pF \pm 5%
C619	4822 121 42713	Film 680pF \pm 5%
C621	4822 121 43268	Film 0.1 μ F \pm 10%
C634	4822 121 43268	Film 0.1 μ F \pm 10%
C641	4822 121 43268	Film 0.1 μ F \pm 10%
C654	4822 124 22237	Elect 10 μ F 16V
C661	4822 124 22237	Elect 10 μ F 16V
C662	4822 124 22237	Elect 10 μ F 16V
C663	4822 124 22237	Elect 10 μ F 16V
C664	4822 124 22237	Elect 10 μ F 16V
C671	4822 121 51282	Film 2400pF \pm 2%
C672	4822 121 43271	Film 5600pF \pm 5%
C673	4822 121 43269	Film 0.018 μ F \pm 5%
C674	4822 121 51282	Film 2400pF \pm 2%
C675	4822 121 43271	Film 5600pF \pm 5%
C676	4822 121 43269	Film 0.018 μ F \pm 5%
C681	4822 121 51282	Film 2400pF \pm 2%
C682	4822 121 43271	Film 5600pF \pm 5%
C683	4822 121 43269	Film 0.018 μ F \pm 5%
C684	4822 121 51282	Film 2400pF \pm 2%
C685	4822 121 43271	Film 5600pF \pm 5%
C686	4822 121 43269	Film 0.018 μ F \pm 5%
C691	4822 124 22238	Elect 100 μ F 25V
C692	4822 124 22238	Elect 100 μ F 25V
C693	4822 124 22238	Elect 100 μ F 25V
C694	4822 124 22238	Elect 100 μ F 25V
R631	4822 116 53758	1.62K Ω \pm 2% 1W
R632	4822 116 53393	825 Ω \pm 2% 1W
R636	4822 116 53758	1.62K Ω \pm 2% 1W
R637	4822 116 53393	825 Ω \pm 2% 1W
R641	4822 116 53758	1.62K Ω \pm 2% 1W
R642	4822 116 53393	825 Ω \pm 2% 1W
R646	4822 116 53758	1.62K Ω \pm 2% 1W
R647	4822 116 53393	825 Ω \pm 2% 1W
R651	4822 116 60446	3.3 Ω \pm 5% 1W
R692	4822 116 60446	3.3 Ω \pm 5% 1W
R693	4822 116 60446	3.3 Ω \pm 5% 1W
R694	4822 116 60446	3.3 Ω \pm 5% 1W
PP26-RESISTORS		
△ R691	4822 116 60446	1.62K Ω \pm 2% 1W
△ R692	4822 116 60446	825 Ω \pm 2% 1W
△ R693	4822 116 60446	1.62K Ω \pm 2% 1W
△ R694	4822 116 60446	1.62K Ω \pm 2% 1W
PP26-MISCELLANEOUS		
△ F831	4822 253 30018	Fuse T630mA
△ F832	4822 253 30018	Fuse T630mA
△ F841	4822 253 30024	Fuse T1.6A
PP26-SEMICONDUCTORS		
Q601	4822 209 72969	IC TDA1541A
Q602	4822 209 72969	IC TCA1541A
Q603	4822 209 73953	IC NJM4580DD
Q604	4822 209 73953	IC NJM4580DD
Q607	4822 130 42842	F.E.T. 2SK372(GR, BL)
Q608	4822 130 42842	F.E.T. 2SK372(GR, BL)
Q609	4822 130 42842	F.E.T. 2SK372(GR, BL)
Q610	4822 130 42842	F.E.T. 2SK372(GR, BL)

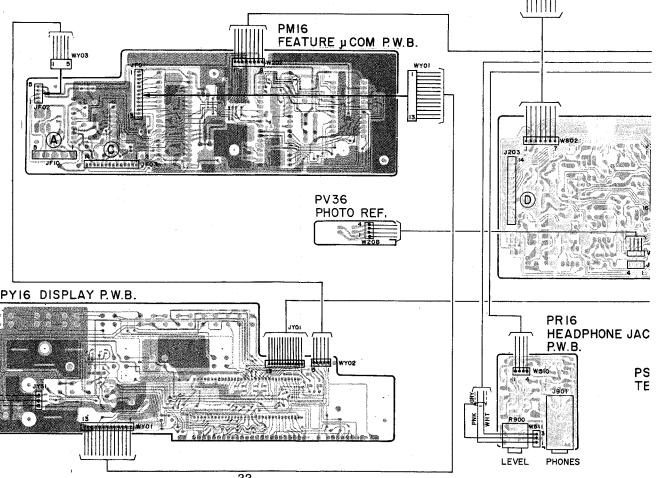
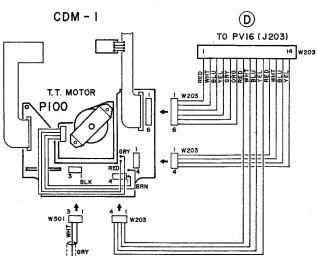

REF. DESIG.	PART NO.	DESCRIPTION	REF. DESIG.	PART NO.	DESCRIPTION
		PP36-3 REGULATOR CIRCUIT BOARD			PV16-SEMICONDUCTORS
D845	4822 130 32508	Diode RL103E, etc.	D205	4822 130 33305	Diode 1SS176, etc.
△ Q831	4822 209 73954	IC NJM7912FA	D253	4822 130 32191	Zener RD7.5EB3
△ Q832	4822 209 70084	IC NJM7812FA	D271	4822 130 33305	Diode 1SS176, etc.
△ Q841	4822 130 61442	Transistor 2SD1913(R, S)	D272	4822 130 33305	Diode 1SS176, etc.
		PR16-HEADPHONE AMP CIRCUIT BOARD	D274	4822 130 33305	Diode 1SS176, etc.
R900	4822 100 20632	Variable Resistor 10KΩ(Α)	D275	4822 130 33305	Diode 1SS176, etc.
Q901	4822 209 83654	IC NJM4556D	D401	4822 130 32366	Zener 5.6V
Q903	4822 130 43818	Transistor 2SC2878	Q201	4822 209 80401	IC NJM4558D
Q804	4822 130 43818	Transistor 2SC2878	Q202	4822 130 42591	Transistor 2SA1175(FF, EF)
Q905	4822 130 43818	Transistor 2SC2878	Q203	5322 130 42052	Transistor 2SC2785(FF, EF)
Q906	4822 130 43818	Transistor 2SC2878	Q204	4822 130 61179	Transistor 2SD2037(D, E)
J901	4822 267 31026	Jack, Headphone	Q205	4822 130 61176	Transistor 2SB1357(D, E)
		PS16-LINE FILTER/POWER SWITCH CIRCUIT BOARD	Q231	4822 130 61176	Transistor 2SB1357(D, E)
CH01	4822 123 30064	Film Cap. 0.15μF ±20% [A,N,E]	Q232	4822 130 61179	Transistor 2SD2037(D, E)
CH02	4822 123 30064	Film Cap. 0.15μF ±20% [A,N,E]	Q233	4822 209 83643	IC IR741
CH03	4822 123 40488	Ceramic Cap. 470pF ±10% [A,N,E]	Q251	4822 209 80401	IC NJM4558D
CH04	4822 123 40488	Ceramic Cap. 470pF ±10% [A,N,E]	Q252	4822 130 42591	Transistor 2SA1175(FF, EF)
△ GH01	4822 122 33276	Ceramic Cap. 0.01μF ±20%	Q253	5322 130 42052	Transistor 2SC2785(FF, EF)
RH01	4822 116 80472	Resistor 220KΩ ±10% 4W[A,N,E]	Q254	4822 130 42591	Transistor 2SA1175(FF, EF)
△ SH01	4822 276 11141	Push Switch, Power	Q255	5322 130 42052	Transistor 2SC2785(FF, EF)
		PS26-TEN KEYS CIRCUIT BOARD	Q256	5322 130 42052	Transistor 2SC2785(FF, EF)
SS01	4822 276 12455	Push Switch, Tact	Q271	4822 209 71674	IC 80C51
SS15	4822 277 30883	Slide Switch	Q272	5322 130 42052	Transistor 2SC2785(FF, EF)
		PV16-SERVO CIRCUIT BOARD	Q402	4822 209 80401	IC NJM4558D
C233	4822 124 21903	PV16-CAPACITORS	Q403	4822 130 42591	Transistor 2SA1175(FF, EF)
C255	4822 124 21903	Elect. 1μF 50V	Q404	4822 130 42591	Transistor 2SA1175(FF, EF)
C257	4822 124 40464	Elect. 1μF 50V	Q405	4822 130 42842	F.E.T. 2SK372(GR, BL)
C274	4822 124 90365	Elect. 4.7μF 35V	Q406	4822 130 42842	F.E.T. 2SK372(GR, BL)
C276	4822 124 90365	Elect. 220μF 25V	Q407	4822 130 61441	Transistor 2SD1862(Q, R)
C278	4822 124 90365	Elect. 220μF 25V			
		PV16-RESISTORS			
R211	4822 116 80256	5.62MΩ ±1% 1/6W	R300	4822 111 90883	PV26-RESISTORS (All Resistors are ±5% and 1/10W)
R212	4822 116 80256	5.62MΩ ±1% 1/6W	R301	4822 111 90883	10KΩ ±1%, Chip
△ R231	4822 116 60314	10Ω ±5% 1/4W, Fusible	R302	4822 111 90885	10KΩ ±1%, Chip
△ R232	4822 116 60314	10Ω ±5% 1/4W, Fusible	R303	4822 111 91365	2.7KΩ ±1%, Chip
△ R233	4822 116 53696	120Ω ±5% 1/4W, Fusible	R304	4822 111 90906	47Ω ±1%, Chip
△ R234	4822 116 53696	120Ω ±5% 1/4W, Fusible	R306	4822 111 90883	2.2KΩ, Chip
R264	4822 116 80261	91KΩ ±5% 1/6W	R307	4822 111 90883	10KΩ ±1%, Chip
R274	4822 116 80252	13KΩ ±1% 1/6W	R308	4822 111 90885	10KΩ ±1%, Chip
R275	4822 116 80261	90.9KΩ ±1% 1/6W	R309	4822 111 91365	2.7KΩ ±1%, Chip
R277	4822 116 80255	357KΩ ±1% 1/6W	R310	4822 111 90906	47Ω ±1%, Chip
					2.2KΩ, Chip

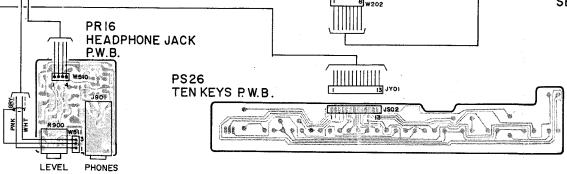
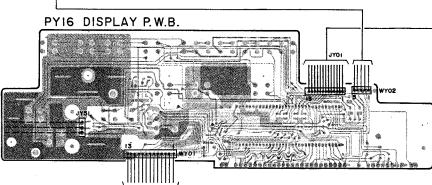
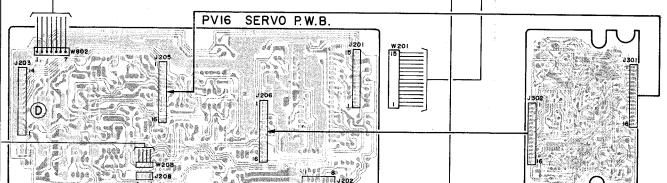
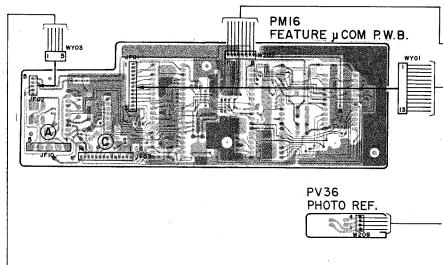
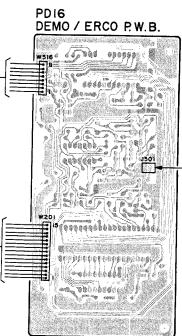
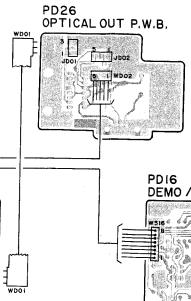
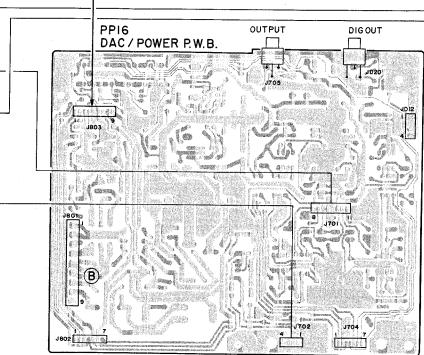
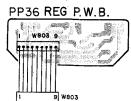
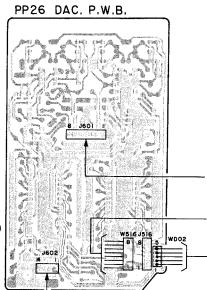
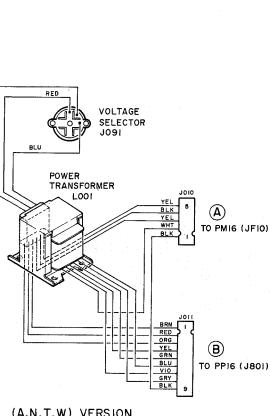
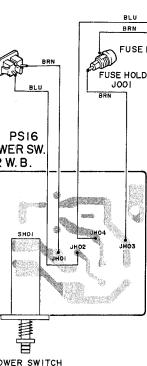
REF. DESIG.	PART NO.	DESCRIPTION
P311	4822 111 90895	10KΩ, Chip
P312	4822 111 90895	10KΩ, Chip
P313	4822 111 90925	68KΩ, Chip
P314	4822 111 90919	47KΩ, Chip
P315	4822 111 90919	47KΩ, Chip
P316	4822 111 90919	47KΩ, Chip
P317	4822 111 90919	47KΩ, Chip
P318	4822 111 90925	68KΩ, Chip
P320	4822 111 91368	5.6KΩ, ±1%, Chip
P321	4822 111 91356	13KΩ, ±1%, Chip
P323	4822 111 91361	330KΩ, ±1%, Chip
P324	4822 111 90916	3.9KΩ, Chip
P325	4822 111 91369	1.9KΩ, Chip
P326	4822 111 90907	22KΩ, Chip
P327	4822 111 90907	22KΩ, Chip
P328	4822 111 90907	56KΩ, Chip
P329	4822 111 90923	56KΩ, Chip
P330	4822 111 91192	470Ω, Chip
P331	4822 111 91192	470Ω, Chip
P332	4822 111 91372	820Ω, Chip
P333	4822 111 91399	1.5KΩ, Chip
P334	4822 111 91192	470Ω, Chip
P335	4822 111 91373	82KΩ, Chip
P336	4822 111 90925	68KΩ, Chip
P337	4822 111 91356	130KΩ, ±1%, Chip
P338	4822 111 90913	86KΩ, Chip
P339	4822 111 90907	22KΩ, Chip
P340	4822 111 90896	100KΩ, Chip
P341	4822 111 91371	470KΩ, Chip
P342	4822 111 90995	10KΩ, Chip
P343	4822 111 90816	4.7KΩ, Chip
P344	4822 111 90818	4.7KΩ, Chip
P346	4822 111 91371	470KΩ, Chip
P347	4822 111 90896	100KΩ, Chip
P348	4822 111 90913	33KΩ, Chip
P349	4822 111 90926	8.2KΩ, Chip
P350	4822 111 90926	8.2KΩ, Chip
P352	4822 111 90926	68KΩ, Chip
P355	4822 111 90923	56KΩ, Chip
P356	4822 111 91358	24KΩ, ±1%, Chip
P357	4822 111 90897	1MΩ, Chip
P358	4822 111 91363	360KΩ, ±1%, Chip
P359	4822 111 90907	22KΩ, Chip
P360	4822 111 90887	6.8KΩ, ±1%, Chip
P361	4822 111 90887	6.8KΩ, ±1%, Chip
P362	4822 111 90889	82KΩ, ±1%, Chip
P363	4822 111 90889	32Ω, ±1%, Chip
P364	4822 111 90816	4.7KΩ, Chip
P365	4822 111 90895	10KΩ, Chip
P366	4822 111 91371	470KΩ, Chip
P367	4822 111 90818	33KΩ, Chip
P368	4822 111 90895	10KΩ, Chip
P369	4822 111 90918	4.7KΩ, Chip
P370	4822 111 91362	36KΩ, ±1%, Chip
P371	4822 111 91346	3.9KΩ, ±1%, Chip
P372	4822 111 91363	360KΩ, ±1%, Chip
P373	4822 111 90809	2.7KΩ, Chip
P374	4822 111 90809	100Ω, Chip
P375	4822 111 90918	4.7KΩ, Chip
P376	4822 111 90913	33Ω, Chip


REF. DESIG.	PART NO.	DESCRIPTION
R379	4822 111 90911	27KΩ, Chip
R380	4822 111 90918	4.7KΩ, Chip
R381	4822 111 90925	68KΩ, Chip
R382	4822 111 90918	4.7KΩ, Chip
R383	4822 111 90918	27KΩ, ±1%, Chip
R385	4822 111 91357	180KΩ, ±1%, Chip
R387	4822 111 90918	47KΩ, Chip
R388	4822 111 90919	47KΩ, Chip
R389	4822 111 90896	100KΩ, Chip
R390	4822 111 91367	75KΩ, ±1%, Chip
R391	4822 111 91367	75KΩ, ±1%, Chip
R393	4822 111 91361	330KΩ, ±1%, Chip
R395	4822 111 90908	220KΩ, Chip
R396	4822 111 90896	100KΩ, Chip
R397	4822 111 91368	120KΩ, Chip
R398	4822 111 90918	47KΩ, Chip
R399	4822 111 90913	47KΩ, Chip
PV26-SEMICONDUCTORS		
D001	4822 130 90274	Zener 2.4V, 1W
D002	4822 130 43469	Diode MA151WK, Chip
D003	4822 130 43408	Diode MA151WK, Chip
D004	4822 130 32868	Diode MA153, Chip
D005	4822 130 32958	Zener 5.1V, Chip
D006	4822 130 32635	Diode MA151K, Chip
C001	4822 209 71675	IC NJM2902M
C002	4822 209 71675	IC NJM2902M
C003	4822 209 71675	IC NJM2902M
C004	4822 209 71676	IC NJM2901M
C006	4822 209 16071	IC 4030
C008	4822 209 83263	IC NJM4568M
C011	4822 209 83451	IC NJM4568M
C008	4822 130 60658	Transistor 2SC2551, Chip
C030	4822 209 83363	IC FMW1
C031	4822 209 83363	IC FMW1
C032	4822 130 42733	Transistor 2SA1162(G), Chip
C014	4822 130 60146	Semicon Composit DTC144EK
C015	4822 130 43398	Transistor 2SC2712(G), Chip
C016	4822 130 60657	Transistor 2SC1009, Chip
C017	4822 130 60657	Transistor 2SC1009, Chip
C018	4822 130 60146	Semicon Composit DTC144EK
PV36-PHOTO REFLECTOR CIRCUIT BOARD		
0401	4822 130 81182	L.E.D. ON2179R
PY16-DISPLAY CIRCUIT BOARD		
CY02	4822 122 32689	Ceramic 0.047μF, Chip
CY04	4822 122 32693	Ceramic 33pF, 35%, Chip
CY05	4822 122 32693	Ceramic 33pF, 35%, Chip
CY07	4822 122 32697	Ceramic 2200pF, ±10%, Chip
CY14	4822 122 32697	Ceramic 2200pF, ±10%, Chip
PY16-CAPACITORS		
DY51	4822 130 32508	Diode RL103E, etc.
DY52	4822 130 32508	Diode RL103E, etc.
VY51	4822 134 40865	Lamp, Play
VY52	4822 134 40864	Lamp, Pause
PY16-RESISTORS		
RY01	4822 111 90901	150KΩ, ±5%, 1/10W, Chip
RY05	4822 111 90895	10KΩ, ±5%, 1/10W, Chip
RY06	4822 111 90895	10KΩ, ±5%, 1/10W, Chip
RY13	4822 111 90918	10KΩ, ±5%, 1/10W, Chip
RY16	4822 111 90922	5.6KΩ, ±5%, 1/10W, Chip
RY17	4822 111 90922	5.6KΩ, ±5%, 1/10W, Chip
RY18	4822 111 90822	2.6Ω, ±3%, 1/10W, Chip
RY19	4822 111 91138	6.8KΩ, ±5%, 1/10W, Chip
PY16-SEMICONDUCTORS		
DY01	4822 130 32635	Diode MA151K, Chip
DY06	4822 130 43398	Transistor 2SC2712(G), Chip
QY01	4822 209 71677	IC LCG554D
QY02	4822 130 61436	Semicon Composit DTA114YK
QY06	4822 209 71677	Transistor 2SD1286(S), Chip
QY07	4822 130 42737	Transistor 2SD1286(S), Chip
QY10	4822 130 42737	Transistor 2SC2712(G), Chip
QY12	4822 130 43398	Transistor 2SC2712(G), Chip
QY13	4822 130 43398	Transistor 2SC2712(G), Chip
QY14	4822 130 43398	Transistor 2SC2712(G), Chip
QY15	4822 209 73951	IC PST523D
PY16-MISCELLANEOUS		
SY01	4822 276 11559	Push Switch, Stop
SY02	4822 276 11559	Push Switch, Pause
SY03	4822 276 11559	Push Switch, Play
SY05	4822 276 11559	Push Switch
SY16	4822 276 11559	Display Unit
XY01	4822 130 90441	Ceramic Vibrator 3.00MHz
ZY01	4822 130 81183	Photo Unit
PY26-LAMP CIRCUIT BOARD		
DY51	4822 130 32508	Diode RL103E, etc.
DY52	4822 130 32508	Diode RL103E, etc.
VY51	4822 134 40865	Lamp, Play
VY52	4822 134 40864	Lamp, Pause

REF. DESIG.	PART NO.	DESCRIPTION
NOTE ON SAFETY:		
Symbol		Fire or electrical shock hazard. Only original parts should be used to replace any part marked with symbol
Symbol		Any other component substitution (other than original type), may increase risk of fire or electrical shock hazard.



BLOCK DIAGRAM



WIRING DIAGRAM

(A,N,T,W) VERSION

TO PM

PARTS LOCATION (Pattern Side)

"SERVICE INFORMATION IS FOR USE BY QUALIFIED PERSONNEL ONLY —
ANY MISADJUSTMENT OR MISALIGNMENT MAY BE TREATED AS
A NON-WARRANTY REPAIR BY ANY MARANTZ SERVICE CENTRE
—"

Kind of Common Parts

RESISTOR

R*** (1) GD05 140, Carbon film fixed resistor, $\pm 5\%$ 1/4W
R*** (2) GD05 160, Carbon film fixed resistor, $\pm 5\%$ 1/6W

C*** : CERAMIC CAP.

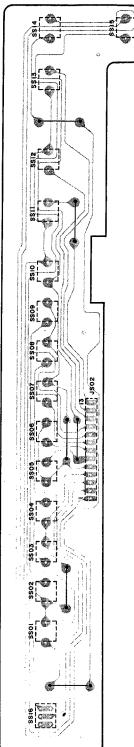
(1) DD1 370, Ceramic condenser,
disc type (titan condenser)
Temp. coeff. P350 to N1000 50V

C*** : CERAMIC CAP.

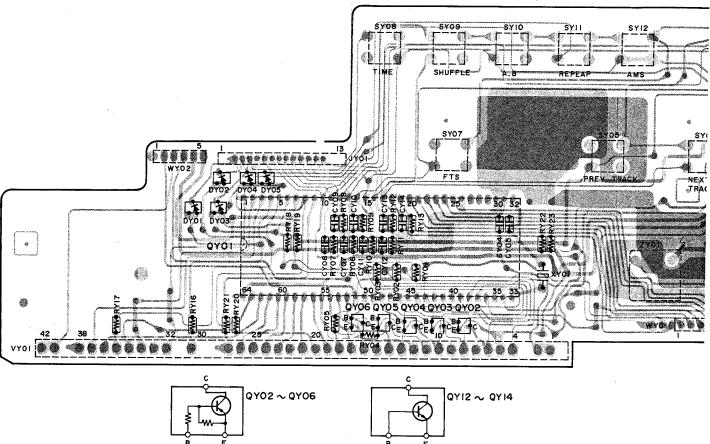
(1) DK16 300, High dielectric constant ceramic
condenser, disc type (titan variable)
Temp. chara. 2B4 50V

C*** : ELECTROLY CAP. (—) / FILM CAP. (—)

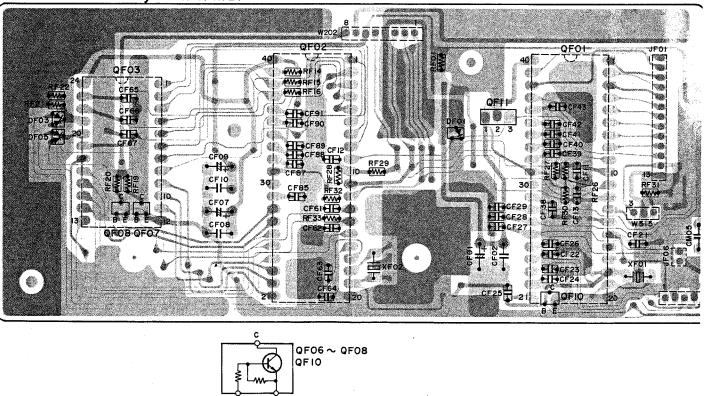
(1) EA 10, Electrolytic condenser,
one-way lead type, tolerance $\pm 20\%$
(2) DF15 350, Plastic film condenser,
one-way type, Mylar, $\pm 5\%$ 50V

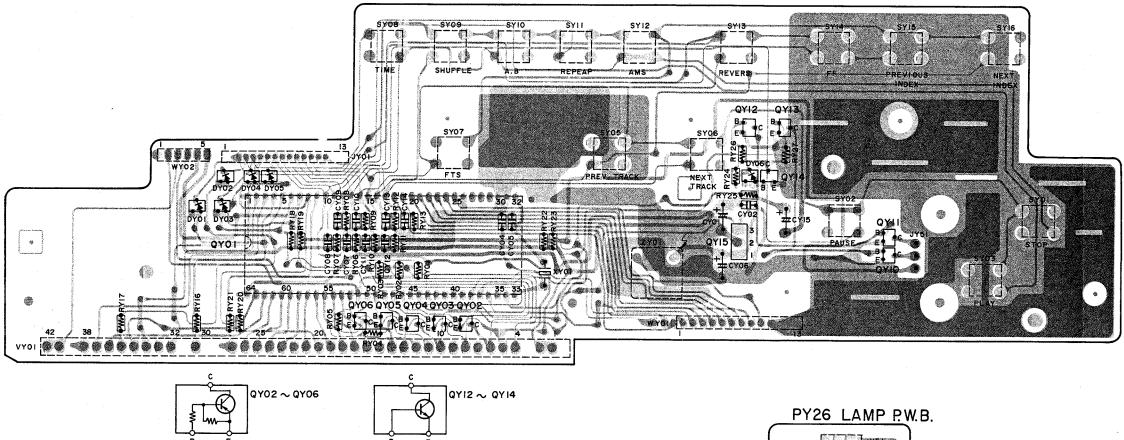

* In case of ordering the common parts, please establish the correct
parts number of 10 figures by the procedure "ASSIGNMENT OF
COMMON PARTS CODES".

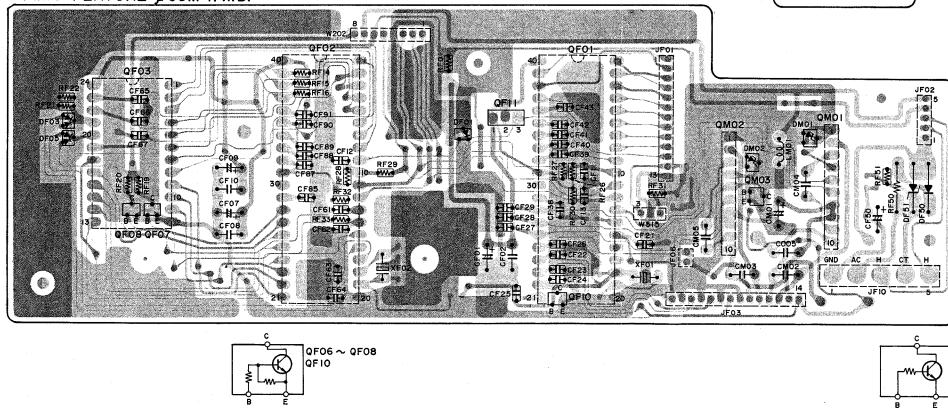
Components and wiring are subject to change for modification without notice.

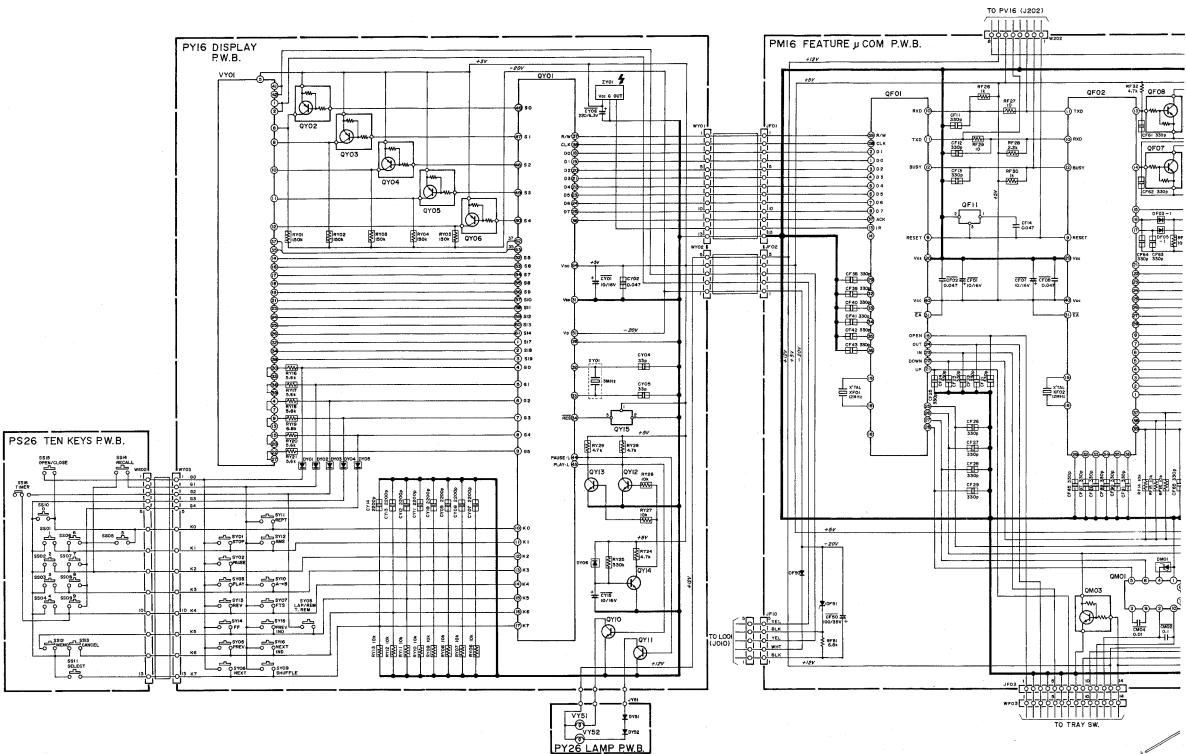

NOTE ON SAFETY:

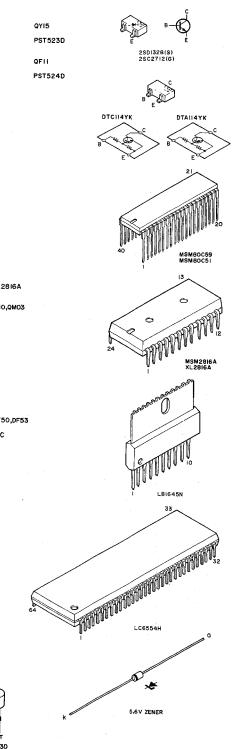
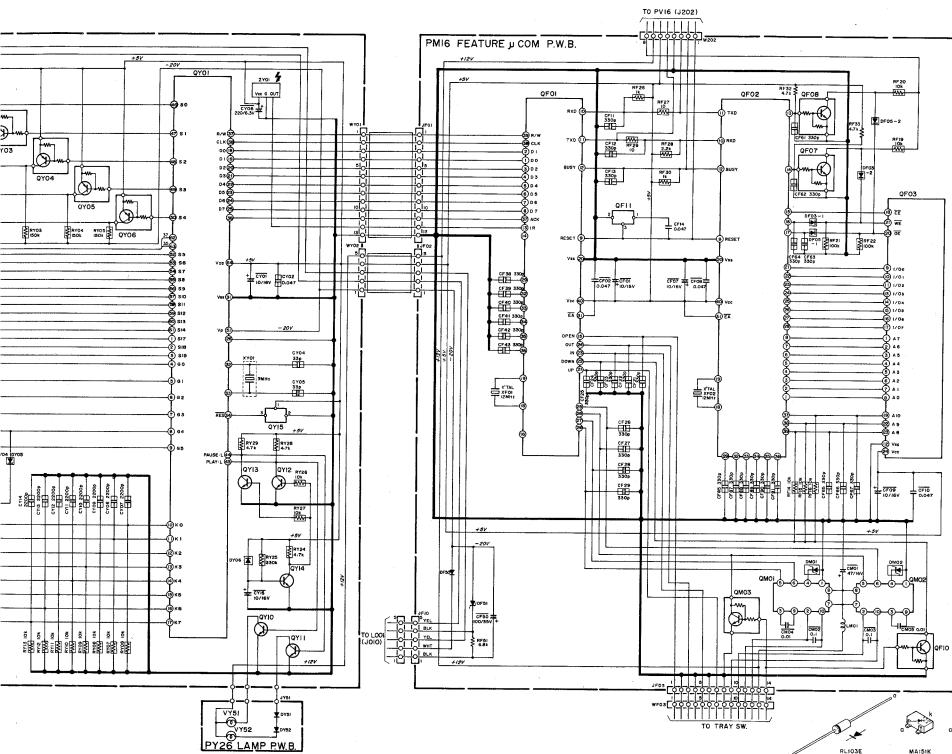
Symbol Δ Fire or electrical shock hazard. Only original parts
should be used to replace any part marked with symbol Δ . Any
other component substitution (other than original type), may
increase risk of fire or electrical shock hazard.

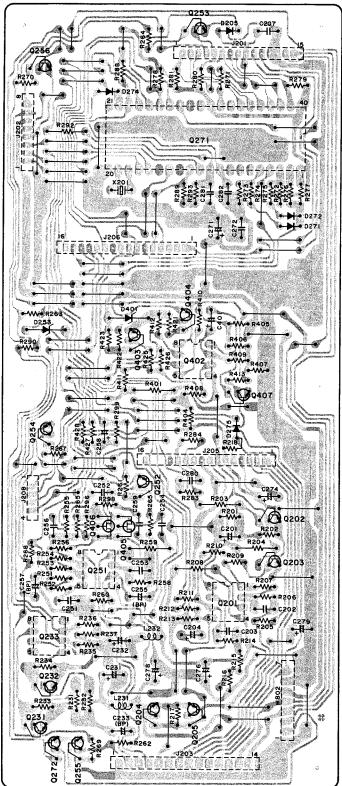

PS26 DISPLAY P.W.B.

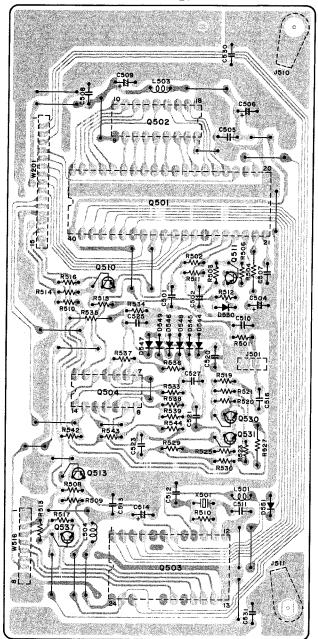

PY16 DISPLAY P.W.B.

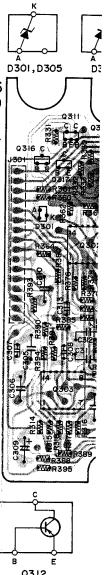

PM16 FEATURE μ COM P.W.B.

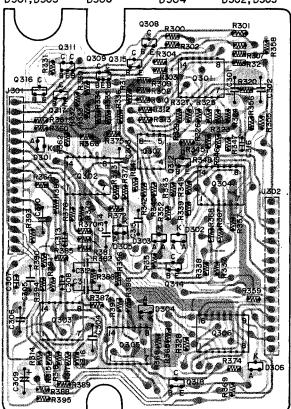
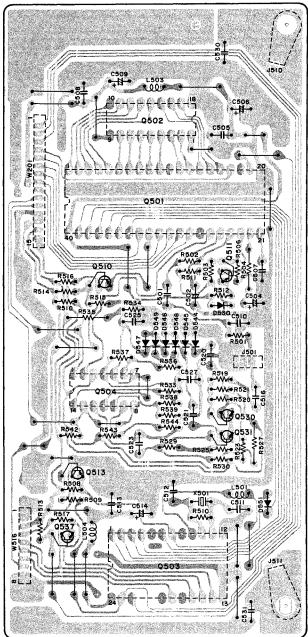

PY16 DISPLAY P.W.B.



PM16 FEATURE μ COM P.W.B.

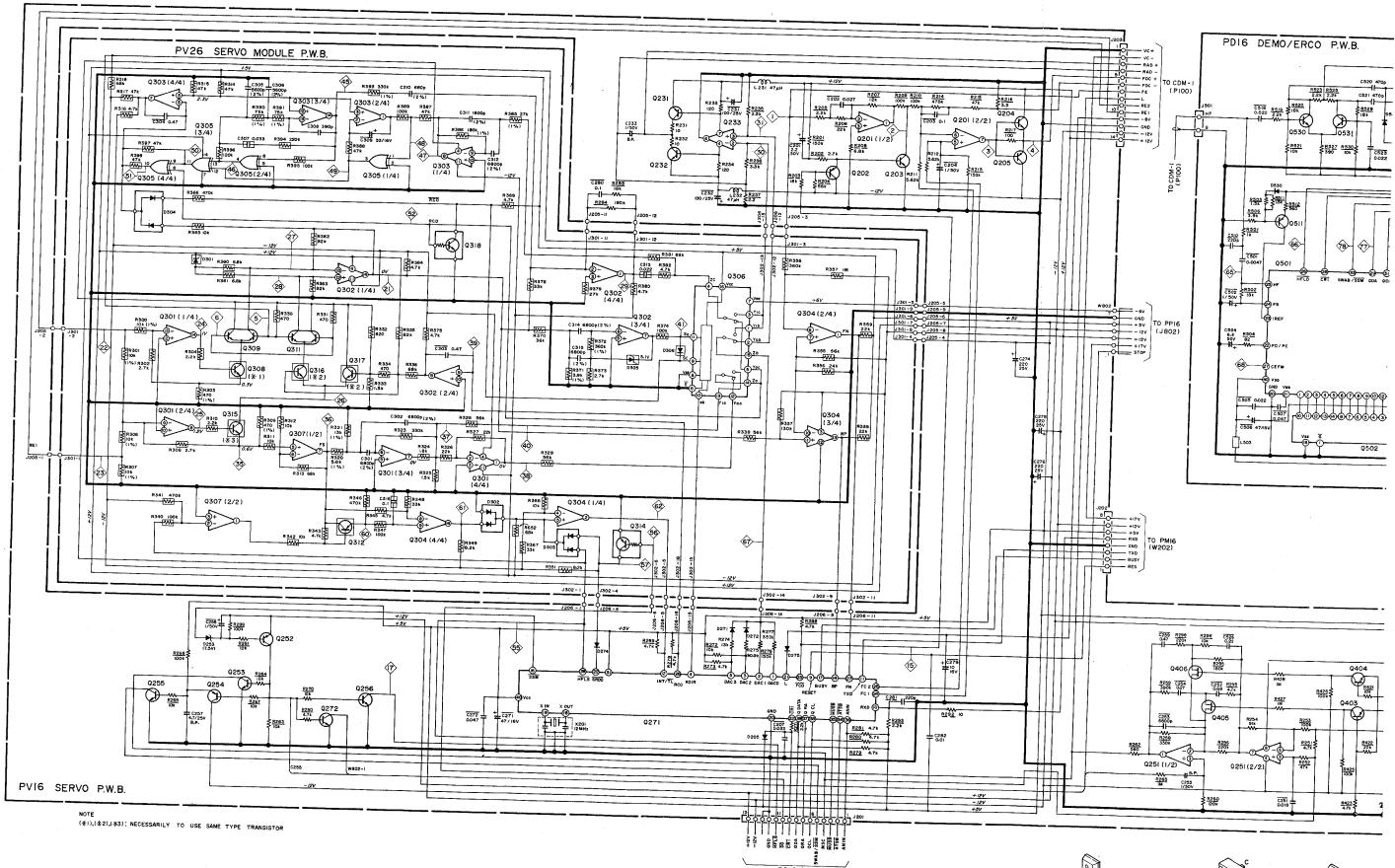

SCHEMATIC DIAGRAM


Model CD-94MK2


PVI6 SERVO P.W.B.

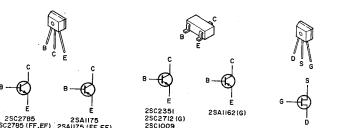


PDI6 DEMO/ERCO P.W.B.

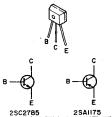
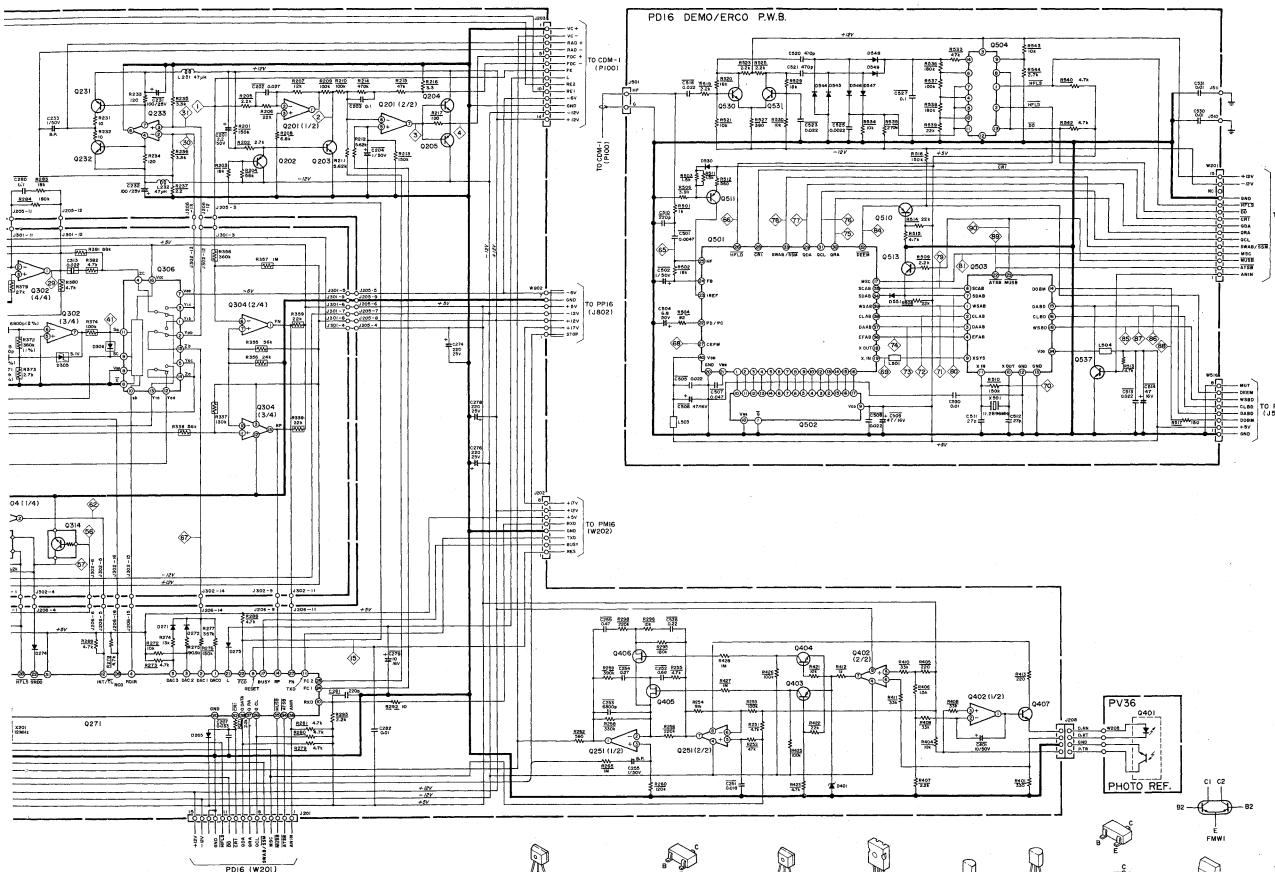
PV26
SERVO
MODULE
P.W.B.



PDI6 DEMO/ERCO P.W.B.

PV36
PHOTO REF P.W.B.

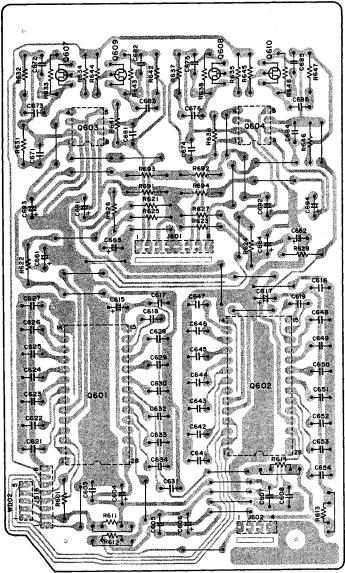


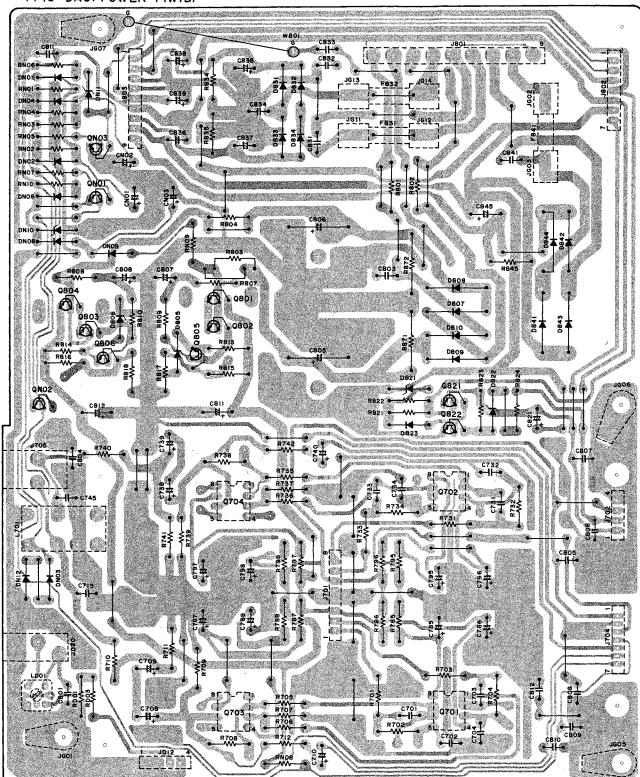
PVI6 SERVO P.W.B.

NOTE
(8),(82),(83): NECESSARILY TO USE SAME TYPE TRANSISTOR

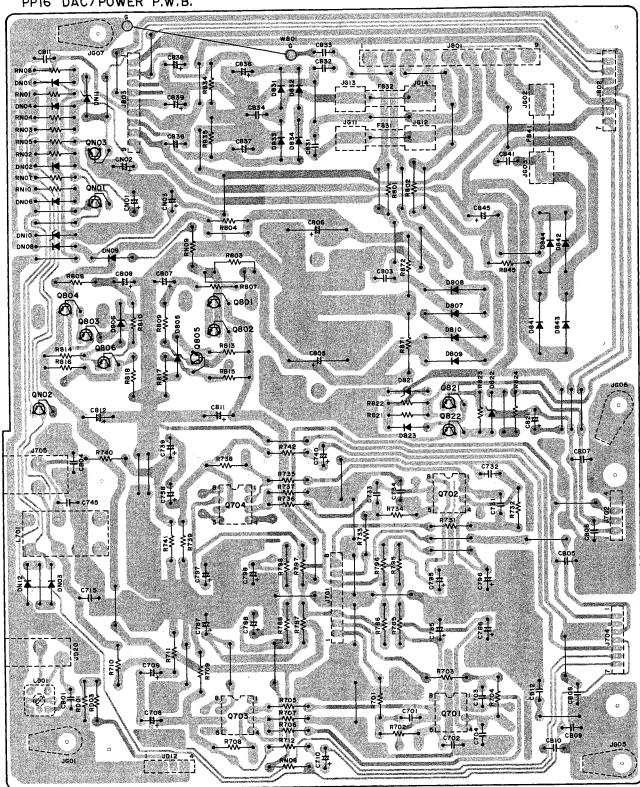
584

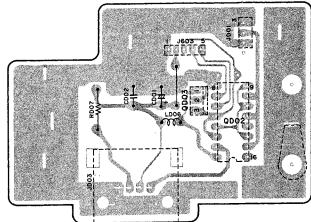


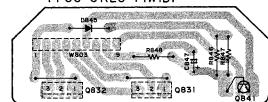
00,0251,0402	Q001	
04,0250	Q002	SA720
00,0252,0254	Q002	SA720
03,0249	Q002	MBB#464-15
AI/175		
03,0253,0255	Q003	
06,0272	Q003	SA7220/PB
04,0232	Q004	
02/037	IR2359	
05,0231	Q010	Q013
05,0231	SA715 (FF,EF)	
B1/57	Q011	
33	25A005 (K,L)	
03/174	Q030	Q501,0537
71	25C2785 (FF,EF)	
ORIGIN SERV BOC03		
01~0303		
K02M02		
04		D205,D271,D272
K2020IM		D274,D275
05		IS133,etc
30	D033	
06	ROT#E93	
53	D301	
07		2-4V ZENER
M4258M	D302,D303	
08	MA15/K	
23/551	D304	
09,0311	MA15/S	
11	D305	
12	D4/V ZENER	
11/161(G)	D306	
14,0318	MA15/K	
C144EK	D401	
15	RD5-EB2	
C1721(G)	D550	
16,0317	MA274	
20/0319A0	D544 ~D549,D55	
00/09	IS153,etc	

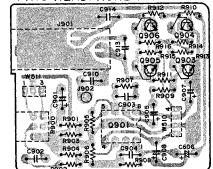

TOP VIEW

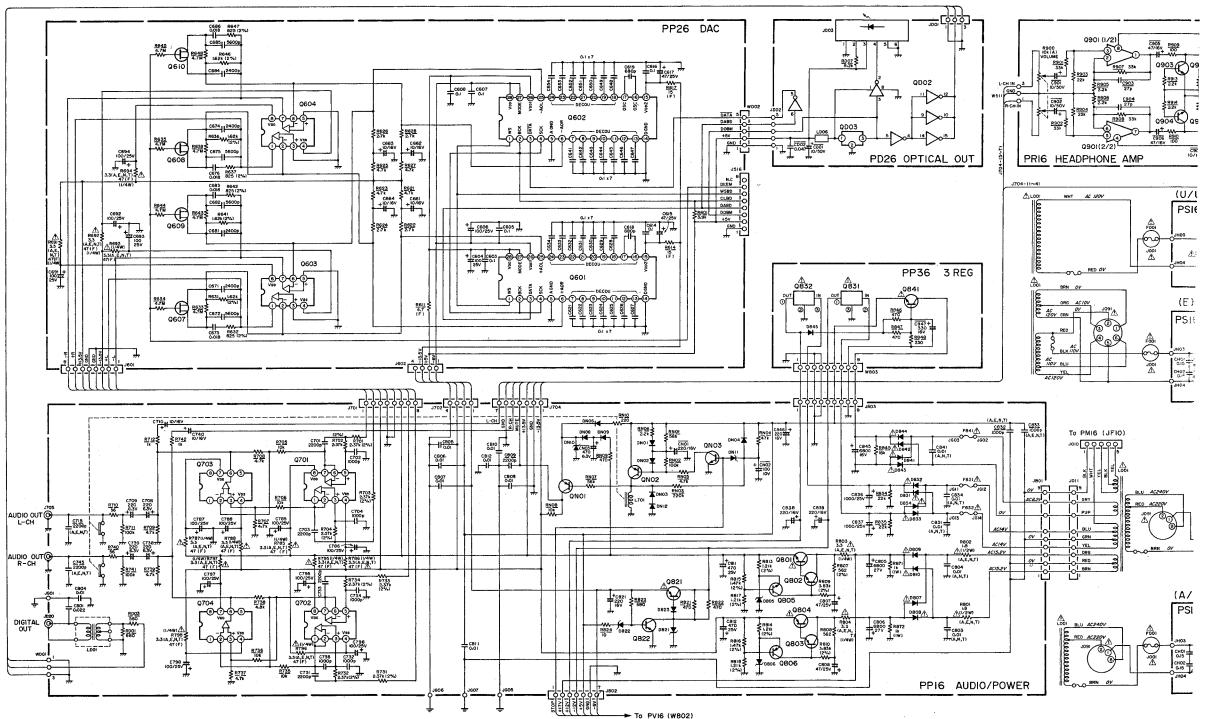
40

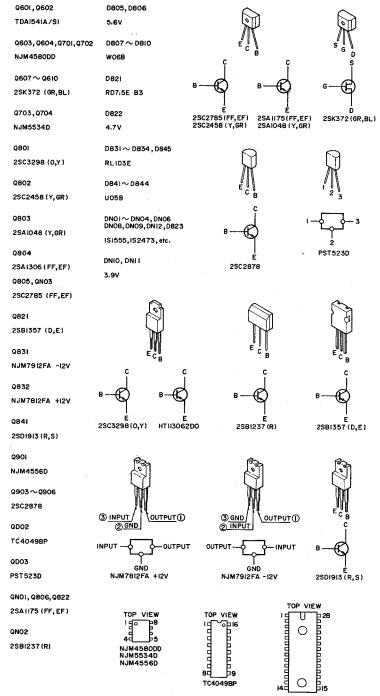
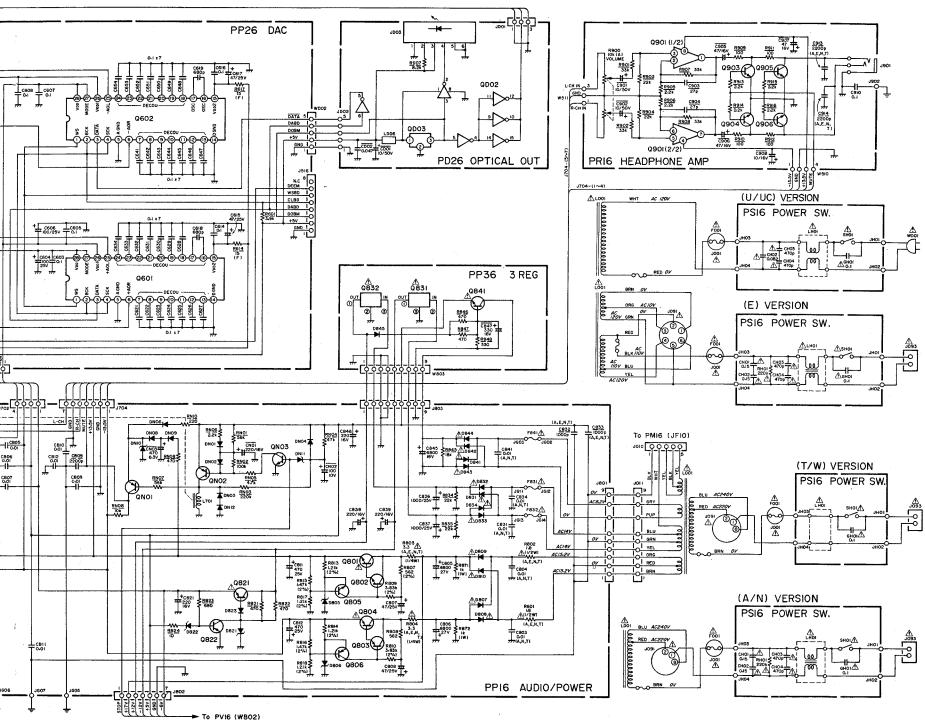

PP26 DAC P.W.B.


PPI6 DAC/POWER P.W.B.


PPI6 DAC/POWER P.W.B.


PD26 OPTICAL OUT P.W.B.





PP36 3REG P.W.B.

PR16 HEADPHONE AMP P.W.B.

