

Power Output	50 watts continuous 90 watts intermittent
Efficiency	60% at 50 watts; 76% at 90 watts.
Gain	Minimum, 40 db; maximum, 95 db (Maximum gain available with Pre-Amp and Transformer.)
Frequency Range	20 to 20,000 cycles \pm 1 db; 10 to 100,000 cycles \pm 3 db.
Distortion	Less than 1% at 50 watts output 20 to 20,000 cycles.
Intermodulation Distortion RMS	1% or less if instantaneous peak power is below 100 watts
Impulse Distortion	Negligible.
Noise Level	90 db below rated output; 70 db with Pre-Amp.
Damping Factor	10 or better for 4, 8, 16, and 32 ohm output windings and approxi- mately 17 for 600 ohm winding.
Input Impedance	100,000 ohms from 20 cycles to 40KC; with input transformer, 50, 250, or 600 ohms or bridging (20,000 ohms).
Output Impedance	4, 8, 16, 32 or (600 ohms balanced)
Tube Complement	Rectifiers: 2 -- 5U4G Pre-Amp: 12AX7 Phase Inverter: 12AX7 Drivers: 2 -- 6J5 Power Output: 2 -- 6L6-G or 2 -- 1614.

Substitute Recommendation for 6L6-G

The Tungsol Type 5881 is recommended for replacing the 6L6-G
tubes when the amplifier is run continuously at above rated
power (50 watts).

GUARANTEE

We guarantee the performance of this equipment and the mechanical and
electrical workmanship to be free of serious defects for a period of 90 days with the
exception that we do not guarantee the tubes or filter condensers beyond that of their
manufacturers.

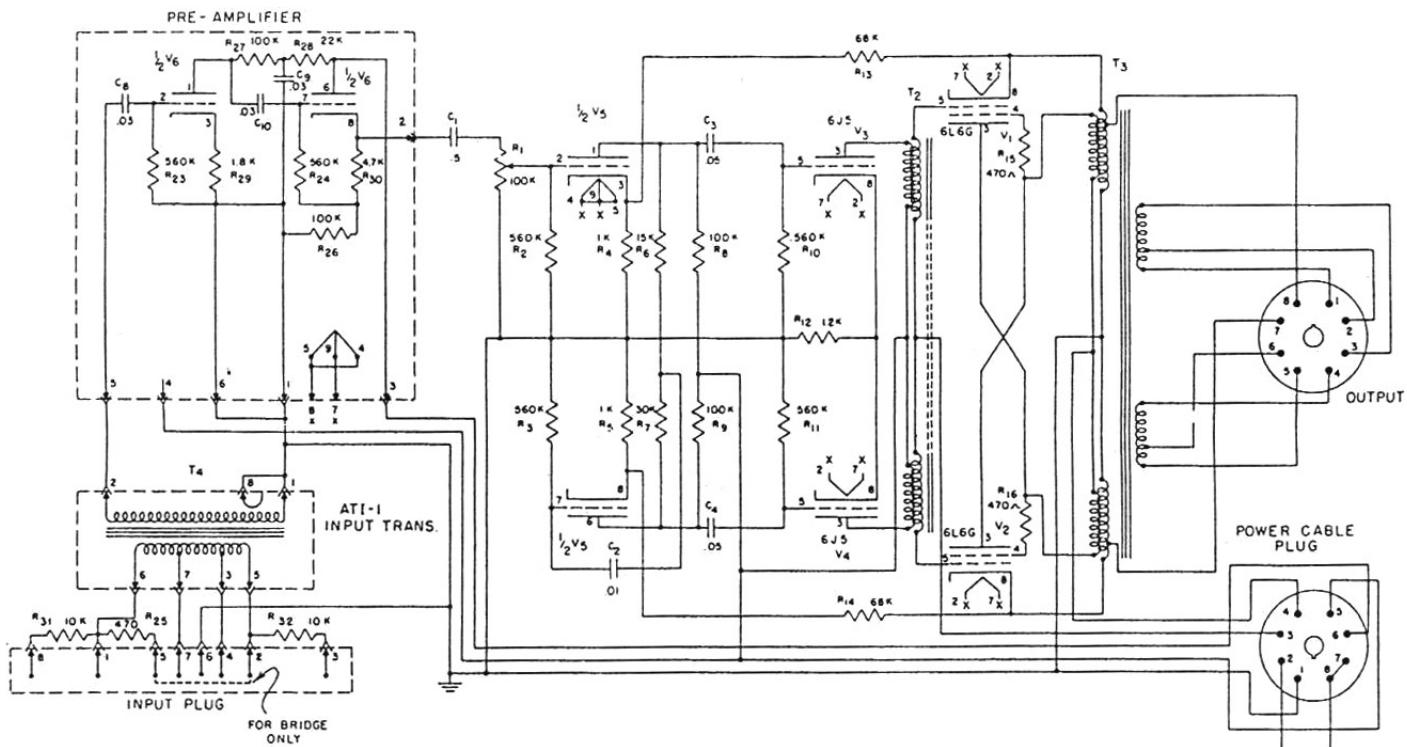
U.S. Patent No. 2477074 -- Other Patents Pending.

Printed in U. S. A.

McINTOSH ENGINEERING LABORATORY, INC.

INPUT

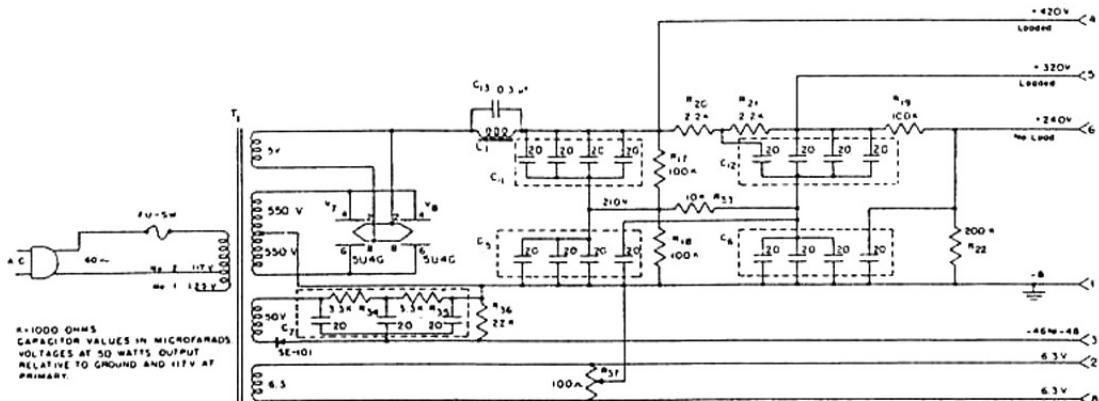
TRANS


6J5

12AX7

V.C.

PRE-AMP


ATI-1 INPUT PLUG CONNECTIONS	
IMPEDANCE	CONNECT TO
50 Ω	7-1
250 Ω	4-1
500 Ω	2-1
20,000 Ω BRIDGE	3-8, JUMPER 5-2

ATI-2 INPUT PLUG CONNECTIONS
CONNECT TO PINS 1&2 OF INPUT PLUG

ATI-3 INPUT PLUG CONNECTIONS		
IMPEDANCE	JUMPER	CONNECT TO
50-62.5Ω	3-7, 3-6	4-1
200-250Ω	7-5	4-1

NOTE
FOR HIGH IMPEDANCE INPUT, DIRECT TO
PRE-AMPLIFIER OR INVERTER AMPLIFIER.
CONNECT TO TERMINALS 2 & 1. 1=GROUND.

OUTPUT PLUG CONNECTIONS		
IMPEDANCE	CONNECT TO	JUMPER PIN NUMBERS
4 Ω	1 - 6	1 - 5, 2 - 6
8 Ω	1 - 4	1 - 5, 3 - 4
16 Ω	1 - 6	2 - 5
32 Ω	1 - 4	3 - 5
600 Ω	7 - 8	—

R=1000 OHMS
CAPACITOR VALUES IN MICROFARADS
VOLTAGES AT 50 WATTS OUTPUT
RELATIVE TO GROUND AND 511V AT
PRIMARY.

PATENT NO. 2,477,074
OTHER PATENTS PENDING

50 W-2 AMPLIFIER

MCINTOSH ENGINEERING LABORATORY INC.

INSTRUCTION BOOK

50W-2

McINTOSH AMPLIFIER

INSTRUCTION BOOK FOR

50W-2

MCINTOSH AMPLIFIER

DESCRIPTION

The output circuit of the McINTOSH Amplifier is the first of its kind and provides 100% coupling between the two primary windings of the output transformer. Almost perfect magnetic coupling is achieved by winding the two primary windings together or bifilarly as if they were one wire. In order to cancel the static magnetic fields due to the flow of direct current through the windings, and, at the same time, arrange that the AC components from the tubes add in-phase, the circuit as shown in the schematic diagram is used. This arrangement provides a "take-turn" primary for the operation of the output tubes in contrast to the conventional "push-pull" circuit where one half of a series winding is used for one tube and the other half of the winding for the other tube. The McINTOSH Circuit, because of the high mutual coupling between windings, from an AC standpoint, utilizes essentially the same coils. This circuit provides a large frequency response advantage over conventional output circuits for the following reason. The impedance between the two tubes has been reduced over the conventional circuit by a factor of 4 to 1 since the turns ratio is reduced by a factor of 2 to 1; a reduction of leakage inductance between primary and secondary of 4 to 1 is achieved because of the relative turn ratio reduction of 2 to 1. These factors in part account for the large advantage over the conventional "push-pull" circuit and are a major contribution to the wide band and low phase shift of the high efficiency McINTOSH Amplifier. It will be further observed that the load is 1/2 in the cathode and 1/2 in the plate for each of the tubes. This arrangement provides directly a feedback factor of approximately 12 db. The remaining feedback is obtained through a balanced loop to the input of the phase inverter.

Considerable care has been given the problem of impulse distortion, and one of the basic reasons for using the bifilar choke input to the final stage, as indicated in the schematic diagram, is to provide a low grid circuit resistance path to DC which circumvents the usual difficulty of excessive bias resulting from transient or impulse program material.

The circuit used permits the maximum possible efficiency of wide band amplifiers, and yet operates at full output with substantially less than 1% harmonic distortion measured at any single frequency from 20 cycles to 20,000 cycles.

ELECTRICAL DESIGN

The circuit consists of two 6L6-G tubes in the final stage, driven by two 6J5 tubes operated in push pull -- one 12AX7 tube consisting of two triodes for the inverter amplifier stage. This is the basic amplifier and it has a power gain of

approximately 40 db requiring a maximum of 2 volts input at the grid of the phase inverter. **CAUTION:** Avoid excessive grid drive voltages as prolonged excessive voltages will injure the 6L6-G tubes.

PREAMPLIFIER

A preamplifier permits, by merely plugging it in, an additional gain of 30 db. When a preamplifier is used, the input plug is inserted in the "Trans" socket instead of the "Preamp" position as is the case when a preamp is not used.

INPUT TRANSFORMER

The addition of a plug-in input transformer will provide an additional gain of 26 db for the 30-50 winding; 17 db through the 250 ohm winding; and 12 db through the 600 ohm winding. Approximately 2 db gain is realized through the bridging coil. These coils are available in double and triple shielding. The double shielded coil provides 80 db of isolation to noise fields while triple shielding provides 90 db isolation to noise fields.

MECHANICAL DESIGN

The McINTOSH 50W-2 Amplifier consists of two basic units -- a P50D power supply and the 50W-2 amplifier. Each unit is enclosed in a chassis 8-1/8 by 6-3/4 by 5-1/4 inches. Both units may be mounted on a relay rack panel 7 by 19 inches. They may be secured to shelf or wall with type MB-2 brackets or may be made portable by use of the 634-50 covers.

The driver transformer and output transformer are potted in one case, the top of this case serving the double function of being the enclosure for the transformers and the chassis for the amplifier itself. The other case contains the power transformer and choke coil, the top of which is likewise the chassis for the power supply. The top of both amplifier and power supply units include filter capacitors and various sockets which are used for tubes, a preamplifier and/or an input transformer.

INSTALLATION

To install amplifier proceed as follows:

1) As a precaution against overload of amplifier or load device such as speaker or cutter head, set volume control of amplifier unit to zero, extreme counter-clockwise position.

2) Put all tubes into sockets as indicated on diagram and as marked on amplifier and power supply units. Certain other types of output tubes than those indicated may be used as explained later.

- 3) If an input transformer is used, plug into socket marked "TRANS".
- 4) If type ACF-1 preamplifier is used, insert a 12AX7 tube in this unit and insert in socket marked "PRE-AMP".
- 5) Plug power cable from the amplifier unit into socket marked "POWER" on power supply unit.
- 6) Connect "Input" Plug. The input plug has a connector between Terminal 1 and metal shield of plug while "output plug does not. A shielded input lead preferably of low capacity should be connected between Terminals 1 and 2 with the shield grounded on Terminal 1. Other connections on input plug apply when input transformer is used, as shown in charts on schematic diagram. Insert Input Plug into socket as shown on pictorial diagram.

NOTE: If the McINTOSH AE-2A Amplifier-Equalizer is used, no input plug connector is required as this plug is furnished with the AE-2A unit. It is only necessary to insert this plug into socket marked "PRE-AMP" on amplifier unit.

- 7) Connect output plug as explained on the schematic diagram for the proper output impedance. Provision is made for 4, 8, 16, 32, and 600 ohm output impedances. The 600 ohm winding must not be grounded on either side as the midpoint of this winding is grounded.
- 8) Insert the A.C. line plug into available wall or convenience outlet.
- 9) Install fused plug in socket marked "SW-FUSE". This plug acts as the switch when no panel is used. When panel is used, the plug from the panel is inserted in the receptacle marked "SW-FUSE", and then the switch on the panel may be used to turn set on and off.
- 10) The amplifier is now ready to operate and the volume control marked "VC" can be advanced cautiously to insure no unusually large signals are placed on the load and amplifier.
- 11) If either the ACF-1 Pre-Amplifier or the AE-2A Amplifier-Equalizer is used, the A.C. hum level is affected by the adjustment of the control marked "HUM ADJ." on the power supply unit.

ELECTRICAL AND MECHANICAL
SPECIFICATIONS

Power Supply	117/125 volts at 60 cycles.
Power Consumption	180 watts at 50-watt output.
	115 watts at zero signal output.